В результате обмена фотонами возникают силы, с которыми заряды действуют друг на друга. На сложный вопрос о том, будет ли сила притягивающей или отталкивающей, можно ответить лишь с учетом всех тонкостей квантовой механики. Достаточно сказать, что, когда Фейнман выполнял свои вычисления, он обнаружил то же, что Фарадей и Максвелл: одинаковые заряды отталкиваются, а противоположные — притягиваются.
Интересно сравнить жонглерские навыки электронов и жонглеров-людей. Человек, по-видимому, может бросать и ловить предметы несколько раз в секунду, однако электрон испускает и поглощает фотоны примерно 1019 раз в секунду.
По теории Фейнмана, жонглерами являются все материальные частицы, а не только электрические заряды. Любая форма материи испускает и поглощает гравитоны — кванты гравитационного поля. Земля и Солнце окружены облаками гравитонов, которые перемешиваются и участвуют в обмене. А в результате гравитационная сила удерживает Землю на орбите.
Сколь же часто отдельный электрон испускает гравитон? Ответ довольно неожиданный: совсем нечасто. В среднем время, необходимое электрону, чтобы испустить гравитон, превышает весь возраст Вселенной. Вот почему, по фейнмановской теории, гравитационное взаимодействие между элементарными частицами настолько слабее электрического.
Так какая же теория верна: полевая Фарадея — Максвелла — Эйнштейна или фейнмановская теория частиц-жонглеров? Они кажутся слишком разными, чтобы быть правильными одновременно.
И тем не менее обе они верны. Все дело в квантовой дополнительности между волнами и частицами, о которой я рассказывал в главе 4. Волны — это полевая концепция: световые волны — это не что иное, как быстрые колебания электромагнитных полей. Но свет — это частицы, фотоны. Так что картины с фейнмановскими частицами и максвелловскими полями — просто еще один пример квантовой дополнительности. Квантовое поле, порожденное облаком частиц, которыми жонглируют, называется конденсатом.
Струнная шутка
Позвольте мне рассказать свежий анекдот, который стал популярен среди струнных теоретиков.
Пара струн заходит в бар и заказывают по пиву. Бармен говорит одной из них: «Давно тебя не видел. Как дела?» Затем поворачивается к другой струне и спрашивает: «Ты ведь здесь впервые? Ты так же замкнут, как и твоя подруга?» И получает в ответ: «Нет, я чертов узел».
М-да… А чего вы ждали от струнного теоретика?
Шутка на этом заканчивается, но история продолжается. Бармен чувствует легкое опьянение. Возможно, это результат лишней рюмки, тайно принятой за стойкой, или, быть может, мерцание квантовых флуктуаций зашедшей пары немного вскружило ему голову. Но нет, это что-то большее, чем стандартная дрожь; струны, похоже, движутся очень странно, как будто какая-то скрытая сила тянет и соединяет их между собой. Каждый раз, когда одна струна делает неожиданное движение, мгновением позже другая срывается со своего сиденья, и наоборот. Но внешне их, кажется, ничто не соединяет.
Удивленный этим загадочным поведением бармен внимательно всматривается в пространство между ними, пытаясь разобраться. Поначалу он может разглядеть только слабое мерцание, дрожащее искажение геометрии, но где-то через минуту он замечает, что маленькие кусочки струн постоянно отрываются от тел двух клиентов, формируя между ними конденсат. Именно этот конденсат притягивает их и заставляет резко двигаться.
Струны испускают и поглощают другие струны. Рассмотрим случай замкнутых струн. В дополнение к обычной дрожи нулевых колебаний квантовая струна может разделиться на две струны. Я опишу этот процесс в главе 21, а пока нам хватит простой картинки, иллюстрирующей эту идею. Вот изображение замкнутой струны.
Струна извивается и дрожит, пока на ней не появляется небольшое выступающее ушко.
Теперь струна готова разделиться и излучить свой небольшой кусочек.
Противоположное тоже возможно: маленькая струна, встретив Другую, большую струну, может быть поглощена в ходе обратного процесса.
Небольшие замкнутые струнные кольца — это гравитоны, роящиеся вокруг более крупных струн и образующие конденсат, который очень напоминает по своим проявлениям гравитационное поле. Гравитоны — кванты гравитационного поля — похожи по строению на глюболы ядерной физики, но в 1019 раз меньше. Интересно, как все это связано (если связано) с ядерной физикой?
Некоторых специалистов из других областей физики раздражает энтузиазм струнных теоретиков, которые уверяют: «Прекрасная, элегантная, непротиворечивая, устойчивая математика теории струн приводит к удивительным, невероятным, фантастическим фактам, касающимся сил гравитации, а значит, она должна быть верной». Однако для скептически настроенного стороннего наблюдателя подобные славословия, даже если они оправданы, никак не повышают убедительность аргументов. Если теория струн дает верную картину реальности, то подтверждать это надо убедительными экспериментальными предсказаниями и эмпирическими проверками, а не восхвалениями. Скептики правы, но правы и струнные теоретики. Настоящая проблема заключается в чрезвычайной трудности экспериментирования с объектами размером, в миллиард миллиардов раз меньшим протона. Но будет теория струн в итоге подтверждена экспериментальными данными или нет, в настоящее время это надежная математическая лаборатория, в которой проверяются различные идеи относительно того, как гравитация согласуется с квантовой механикой.
Поскольку в теории струн появляется гравитация, можно ожидать, что при сближении достаточно массивных струн должна образовываться черная дыра. Таким образом, теория струн — это концепция, в рамках которой можно исследовать хокинговский парадокс. Если Хокинг прав в том, что черные дыры неизбежно приводят к потере информации, тогда математика теории струн должна это подтвердить. Если Хокинг ошибается, теория струн должна показать, как может информация выходить из черной дыры.