В каждой точке трехмерного пространства имеется также шесть других свернутых измерений, в которых могут перемещаться очень маленькие объекты. По необходимости я рисую пространства Калаби — Яу отдельно друг от друга, но вы должны представлять себе их в каждой точке обычного пространства.
Теперь вернемся к струнам. Обычный жгут от эспандера можно растягивать в разных направлениях, например вдоль оси восток — запад, или север — юг, или верх — низ. Его можно растягивать под разными углами, скажем, на север-северо-запад с 10-градусным наклоном к горизонту. Но если есть дополнительные измерения, число возможностей многократно возрастает. В частности, струны Могут растягиваться вдоль свернутых измерений. Замкнутая струна Может опоясывать пространство Калаби — Яу один или несколько Раз, но при этом вовсе не быть растянутой в обычных пространственных направлениях.
Позвольте мне еще немного усложнить ситуацию. Струна может опоясывать свернутое пространство и в то же самое время извиваться, подобно змее, так что изгибы прокатываются по струне.
Чтобы натянуть струну вокруг свернутого измерения и заставить ее вибрировать, требуется энергия, так что частицы, описываемые такими струнами, будут тяжелее обычных.
Силы
Наша Вселенная — это мир не только пространства, времени и частиц, но также и сил. Электрические силы, действующие между заряженными частицами, могут перемещать кусочки бумаги и пылинки (скажем, за счет статического электричества), но более важно, что эти силы удерживают электроны на их орбитах вокруг атомных ядер. Гравитационные силы, действующие между Землей и Солнцем, удерживают на орбите Землю.
Все силы в конечном счете связаны с микроскопическими силами, действующими между отдельными частицами. Но откуда берутся эти межчастичные силы? Для Ньютона универсальная силапритяжения, действующая между массами, была просто физическим фактом — в действительности он смог ее только описать, но не объяснить. Однако в течение девятнадцатого и двадцатого столетий такие физики, как Майкл Фарадей, Джеймс Клерк Максвелл, Альберт Эйнштейн и Ричард Фейнман, сделали блестящие открытия, объяснявшие силы через стоящие за ними более фундаментальные концепции.
Согласно Фарадею и Максвеллу, электрические заряды притягиваются и отталкиваются не непосредственно; в пространстве между зарядами существует посредник, передающий взаимодействие. Представьте себе «Слинки» — эту ленивую игрушечную пружинку, — натянутую между двумя разнесенными на некоторое расстояние шарами.
Каждый из шаров подвергается воздействию силы только со стороны присоединенного к нему конца «Слинки». Затем каждый фрагмент «Слинки» воздействует на своих соседей. Сила передается по «Слинки», пока не передаст натяжение к объекту на другом конце. Может казаться, что два объекта притягиваются друг к другу, но это иллюзия, созданная посредничающей между ними «Слинки».
Когда доходит до электрически заряженных частиц, посредничающие агенты — это заполняющие пространство между ними электрическое и магнитное поля. Хотя они невидимы, эти поля совершенно реальны: это непрерывные невидимые возмущения пространства, которые переносят взаимодействия между зарядами.
Эйнштейн в своей теории гравитации пошел еще глубже. Массы искривляют геометрию пространства-времени в своей окрестности и благодаря этому искажают траектории других масс. Искажения геометрии тоже можно рассматривать как поля.
Электрическое поле положительного заряда
Магнитное поле стержневого магнита
Могло показаться, что на этом все кончится. Так и было, пока не появился Ричард Фейнман с квантовой теорией сил, которая на первый взгляд была совершенно не похожа на теории поля Фарадея — Максвелла и Эйнштейна. Его теория начинается с представления о том, что электрически заряженные частицы могут испускать (бросать) и поглощать (ловить) фотоны. В этой идее еще не было ничего странного; давно уже было понято, что электроны испускают рентгеновские лучи, когда внезапно останавливаются у препятствия в рентгеновской трубке. Обратный процесс поглощения был описан Эйнштейном в его статье, где он впервые ввел идею световых квантов.
Фейнман изображал заряженные частицы в виде жонглеров фотонами, постоянно испускающими и поглощающими их и создающими в пространстве, окружающем заряд, огромное число фотонов. Отдельный покоящийся электрон — это идеальный жонглер, никогда не теряющий то, что подбросил. Но, как и в случае с жонглером-человеком в железнодорожном вагоне, неожиданное ускорение может все нарушить. Заряд может сместиться со своей позиции, из-за чего окажется не в том месте, чтобы поглотить фотон. Этот упущенный фотон улетает прочь и становится частью излучаемого света.
Вернемся в железнодорожный вагон, где в поезд вместе с жонглером садится его партнер, и они вдвоем решают попрактиковаться в командной жонглерской работе. В основном каждый жонглер ловит свои собственные броски, но при сближении время от времени каждый из них может ловить шары, брошенные другим. То же самое происходит, когда сближаются два электрических заряда. Окружающие их облака фотонов смешиваются, и один заряд может поглощать фотоны, испущенные другим. Этот процесс называется обменом фотонами.