Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать онлайн книгу. Автор: Леонард Сасскинд cтр.№ 81

читать книги онлайн бесплатно
 
 

Онлайн книга - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики | Автор книги - Леонард Сасскинд

Cтраница 81
читать онлайн книги бесплатно

Нижний конец энергетической лестницы называется нулевым состоянием. Добавление одной единицы энергии переводит в первое возбужденное состояние. Следующий энергетический шаг дает второе возбужденное состояние и так далее шаг за шагом. Обычные элементарные частицы, такие как электроны и фотоны, находятся внизу лестницы. Если они вообще вибрируют, это лишь квантовые нулевые колебания. Но если теория струн верна, то их можно заставить вращаться и колебаться со все большей энергией (а значит, и массой).

Гитарную струну можно возбудить, щипнув медиатором, но, как вы понимаете, гитарный медиатор великоват для того, чтобы возбудить электрон. Простейший способ состоит в том, чтобы ударить электрон другой частицей. В результате мы используем одни частицы в качестве «медиаторов», чтобы «щипать» другие. Если столкновение достаточно сильное, оно заставит обе струны вибрировать в возбужденных состояниях. Естественно задать вопрос: «Почему бы физикам-экспериментаторам не возбудить электроны и протоны на ускорителях, сняв тем самым, раз и навсегда, вопрос о том, являются ли частицы вибрирующими струнами?» Проблема в высоте ступеньки — она слишком велика. Энергия, необходимая для того, чтобы закрутить или заставить вибрировать адрон, — довольно умеренная по стандартам современной физики элементарных частиц, но энергия, требуемая для возбуждения фундаментальной струны, чрезмерно велика. Добавление электрону одной порции энергии увеличило бы его массу почти на планковскую величину. Еще хуже то, что эту энергию надо сконцентрировать в невероятно малом объеме пространства. Грубо говоря, потребовалось бы затолкать массу миллиарда миллиардов протонов в область размером в миллиард миллиардов раз меньше самого протона. Ни один из построенных ускорителей даже близко не подходит для такой задачи. Подобное никогда не делалось и, вероятно, никогда не будет сделано [132].

Сильно возбужденные струны в среднем больше тех, что находятся в нулевом состоянии; дополнительная энергия растягивает их, увеличивая их длину. Если суметь вкачать в струну достаточную энергию, она растянется и станет похожа на большой, безумно дрожащий, запутанный клубок шерсти И тут нет предела; при наличии достаточной энергии струну можно растянуть до любого размера.

Есть только один способ, которым сильно возбужденные струны могут быть получены в природе, раз уж их не получить в лаборатории. Как мы увидим в главе 21, черные дыры — даже те гиганты, что находятся в центрах галактик, — это колоссальные запутанные «струны-монстры».

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Существует еще одно важное и удивительное следствие квантовой механики, слишком тонкое и технически сложное, чтобы объяснять его здесь. Пространство, каким мы его обычно воспринимаем, трехмерно. Существует много терминов для описания этих трех измерений, например долгота, широта и возвышение или длина, ширина и высота. Математики и физики часто описывают размерности, используя три оси, обозначенные x,yw.z.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Однако фундаментальным струнам недостаточно для движения только трех измерений. Я имею в виду, что тонкая математика теории струн становится ненадежной, пока к пространству не добавляются дополнительные измерения. Струнные теоретики много лет назад обнаружили, что математическая согласованность их уравнений нарушается, если не ввести шесть дополнительных измерений пространства. Мне всегда казалось, что если понимаешь что-то достаточно хорошо, то должна быть возможность объяснить это неформально. Но потребность теории струн в шести дополнительных измерениях так и не поддается простому объяснению, хотя прошло уже тридцать пять лет. Боюсь, тут я вынужден буду прибегнуть к методу негодяев и сказать: «Можно показать, что…»

Я бы очень удивился, встретив кого-то, способного представить себе четыре или пять измерений, не говоря уже о девяти [133]. Мне это удается не лучше, чем вам, но я могу добавить шесть букв алфавита — r, s, t, и, v, w — к обычным х, у и z, а затем терзать эти символы методами алгебры и анализа. При девяти измерениях, доступных для движения, «можно показать, что» теория струн становится математически согласованной.

Теперь вы можете спросить: если теория струн требует девяти измерений, а наблюдаемое пространство имеет только три, не является ли это прямым доказательством того, что теория струн неверна? Но не все так просто. Многие знаменитые физики, включая Эйнштейна, Вольфганга Паули, Феликса Клейна, Стивена Вайнберга, Мюррея Гелл-Манна и Стивена Хокинга (никто из них не является струнным теоретиком), серьезно рассматривали возможность того, что пространство имеет более трех измерений. Очевидно, они не галлюцинировали, значит, должен быть какой-то способ скрыть существование дополнительных размерностей. Характерные словечки, используемые для обозначения сокрытия дополнительных измерений, — «свертка» и «компактификация». Струнные теоретики сворачивают шесть дополнительных измерений посредством процесса, называемого компактификацией. Идея состоит в том, что дополнительные измерения пространства могут быть скручены в очень маленькие узлы, так что мы, огромные создания, слишком велики, чтобы в них перемещаться или даже заметить их.

Представление о том, что одно или более измерений можно скрутить в крошечную геометрическую форму, слишком маленькую, чтобы ее заметить, — это общее место современной физики высоких энергий. Некоторые люди думают, что дополнительные измерения — это слишком умозрительная идея, «научная фантастика с уравнениями», как сказал один остряк. Но это недопонимание, основанное на невежестве. Все современные теории элементарных частиц используют своего рода дополнительные размерности для обеспечения недостающих механизмов, которые делают частицы сложными.

Струнные теоретики не изобрели концепцию дополнительных измерений, а использовали ее особым творческим способом. Хотя теория струн требует шести дополнительных измерений, общее представление можно получить, добавив к пространству всего одно новое измерение. Давайте исследуем идею дополнительных измерений в этой ее простейшей ипостаси. Начав с мира, имеющего только одно пространственное измерение, — назовем его Лайнландией, — мы добавим одно дополнительное свернутое измерение. Для указания точки в Лайнландии достаточно всего одной координаты; обитатели называют ее X.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию