Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - читать онлайн книгу. Автор: Дэйв Голдберг, Джефф Бломквист cтр.№ 38

читать книги онлайн бесплатно
 
 

Онлайн книга - Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности | Автор книги - Дэйв Голдберг , Джефф Бломквист

Cтраница 38
читать онлайн книги бесплатно

«Я хотел бы выразить свою точку зрения на определения, которыми часто пытаются классифицировать типы физических исследований: например, чистая, прикладная, неограниченная, фундаментальная, базовая, академическая, промышленная, практическая физика и т. д. Мне кажется, что слишком часто некоторые слова используются в пренебрежительном смысле: с одной стороны, это принижает практические цели производства полезных вещей, а с другой – отрицает возможное долгосрочное значение исследований в новых отраслях знания, где нельзя предсказать появление полезных результатов. Меня часто спрашивали, например, относится планируемый мной эксперимент к чистой или прикладной науке; я же считаю более важным понять, может ли эксперимент принести новые, желательно остающиеся на века знания о природе. Если получить такие знания удается, то это, на мой взгляд, и есть хорошая фундаментальная наука; и это гораздо более важный показатель, чем то, руководствуется ли экспериментатор жаждой чисто эстетического удовлетворения или пытается повысить стабильность работы транзистора высокого напряжения. Для высшего блага человечества требуется и тот и другой подходы».

Поскольку так говорил не кто-то, а изобретатель едва ли не самого полезного предмета со времен появления колеса, законодателям и управленцам всего мира стоило бы прислушаться к этим словам. Квантовая механика изменила мир, а новые теории, возникающие в наши дни на переднем краю физики, наверняка смогут еще раз изменить нашу жизнь.

Как всегда, мы начнем с начала: от Вселенной с одной частицей перейдем к рассмотрению Вселенной, где частиц будет две. Представьте себе, например, простую Вселенную, состоящую из двух изолированных атомов водорода; два электрона связаны с двумя отдаленными протонами, вокруг которых вращаются по орбите. Через несколько страниц мы начнем сводить их вместе и посмотрим, что получится, но пока предположим, что они расположены очень далеко друг от друга.

Принцип Паули утверждает, что два электрона не могут находиться в одинаковом квантовом состоянии, потому что это не отличимые друг от друга фермионы. Сначала может появиться соблазн заявить, что, если атомы далеко друг от друга, то два электрона должны пребывать в различных квантовых состояниях, так что и говорить тут не о чем. Но все значительно интереснее. Представьте, что мы помещаем электрон 1 в атом 1, а электрон 2 – в атом 2. Через некоторое время утверждение «электрон 1 все еще в атоме 1» не будет иметь смысла. Он может находиться и в атоме 2, потому что всегда есть вероятность того, что электрон совершил квантовый скачок. Как мы помним, все, что может произойти, действительно происходит, и электроны вполне могут за мгновение облететь всю Вселенную. На языке мельчайших циферблатов, даже если начать с того, который описывает один из электронов, расположенный вблизи только одного из протонов, придется в следующий миг ввести уже и циферблат вблизи другого протона. И хотя подразумевается, что циферблаты вблизи второго протона будут очень малы, их размеры все же не равны нулю, так что существует конечная вероятность нахождения там электрона. Чтобы более четко представлять себе последствия принципа Паули, нужно перестать мыслить о двух изолированных атомах и перейти к рассмотрению всей системы в целом: у нас есть два протона и два электрона, и наша задача – понять их самоорганизацию. Упростим ситуацию: пренебрежем электромагнитным взаимодействием между двумя электронами, что будет вполне неплохим приближением, если протоны удалены друг от друга, к тому же на ходе наших рассуждений это почти никак не скажется.

Что мы знаем о разрешенной энергии электронов в двух атомах? Для общей идеи можно обойтись без вычислений – тем, что мы уже знаем. Если протоны находятся очень далеко друг от друга (например, в нескольких километрах), то самая низкая разрешенная энергия для электронов должна обязательно соответствовать ситуации, когда они связаны с протонами и образуют два изолированных атома водорода. В этом случае велик соблазн сделать вывод, что самое низкое энергетическое состояние для всей системы с двумя протонами и двумя электронами будет соответствовать двум атомам водорода, которые находятся в своих самых низких энергетических состояниях и полностью игнорируют друг друга. Но каким бы верным это ни казалось, на самом деле это не может быть верным. Мы должны мыслить о системе в целом, а эта система из четырех частиц, как и изолированный атом водорода, должна иметь собственный уникальный спектр разрешенных энергий электрона. И принцип Паули подсказывает, что электроны не могут одновременно быть на совершенно одинаковом энергетическом уровне вблизи каждого протона, находясь в блаженном неведении по поводу существования друг друга [36].

Кажется, мы должны заключить, что пара идентичных электронов в двух отдаленных атомах водорода не может обладать одинаковой энергией, но мы также сказали, что ожидаем нахождение электронов на самом низком энергетическом уровне, соответствующем идеализированному, полностью изолированному атому водорода. Оба этих утверждения не могут быть истинными, и, немного подумав, можно понять, каким должен быть выход из положения: в идеализированном и изолированном атоме водорода должны быть два энергетических уровня, а не один, как мы предполагали изначально. Таким образом мы сможем уместить на нем два электрона и не нарушить принципа Паули. Разница между этими двумя энергиями должна быть очень мала, если атомы сильно удалены друг от друга, так что мы можем представить, что атомы не обращают друг на друга внимания. Но на самом деле они не забывают о существовании друг друга, и все из-за вездесущего принципа Паули: если один из электронов находится в одном энергетическом состоянии, то второй электрон должен пребывать в другом, отличном от первого, энергетическом состоянии, и эта тесная связь между двумя атомами сохраняется независимо от того, насколько они удалены друг от друга.

Та же логика распространяется не только на систему из двух атомов: если по Вселенной рассеяны 24 атома водорода, то на каждое энергетическое состояние в мире единственного атома будет приходиться 24 энергетических состояния, принимающих схожие, но не равные друг другу значения. Когда электрон в одном из атомов занимает некое конкретное состояние, он при этом «знает» все состояния оставшихся 23 электронов, как бы далеко те ни находились. Итак, каждый электрон во Вселенной осведомлен о состоянии каждого другого электрона. И останавливаться на электронах необязательно: протоны и нейтроны тоже можно считать фермионами, так что каждый протон знает о других протонах и каждый электрон знает о других электронах. Связь между частицами, из которых состоит наша Вселенная, настолько тесна, что распространяется на всю Вселенную. Связь эта эфемерна в том смысле, что для сильно отдаленных частиц разница энергий настолько мала, что не оказывает сколь-нибудь существенного воздействия на нашу повседневную жизнь.

Это одно из самых странно звучащих утверждений, к которым мы пришли на страницах книги. Кажется, что заявление о взаимосвязи каждого атома во Вселенной с каждым другим – это брешь, через которую может прорваться всякая холистическая бессмыслица. Но на самом деле здесь нет ничего, с чем бы мы не встречались до этого. Вспомните прямоугольную потенциальную яму, рассматриваемую в главе 6. Ширина ямы определяет разрешенный спектр энергетических уровней, и с изменением размера ямы изменяется и спектр энергетических уровней. То же верно и в данном случае: форма ямы, в которой находятся наши электроны, а следовательно, энергетические уровни, которые им разрешено занимать, определяется положением протонов. Если протонов два, то энергетический спектр определяется положением обоих. А если мы имеем дело с 1080 протонов, формирующих Вселенную, то положение любого из них влияет на форму ямы, в которой находятся 1080 электронов. Существует лишь один набор энергетических уровней, и когда что-то меняется (например, электрон переходит с одного энергетического уровня на другой), то все остальное должно немедленно перестроиться, так чтобы ни одна пара фермионов не оказалась на одинаковом энергетическом уровне.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию