Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - читать онлайн книгу. Автор: Джеффри Уэст cтр.№ 14

читать книги онлайн бесплатно
 
 

Онлайн книга - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний | Автор книги - Джеффри Уэст

Cтраница 14
читать онлайн книги бесплатно

В следующей рамке приведен общедоступный вариант первого из этих доказательств, показывающего, что если форма объекта неизменна, то при увеличении его размеров все его поверхности увеличиваются пропорционально квадрату, а все его объемы – пропорционально кубу линейных размеров.

Рассуждение галилея о масштабировании поверхностей и объемов

Для начала рассмотрим простейший геометрический объект, например квадратную плитку, и представим себе ее увеличение до большего размера (см. рис. 5). Например, предположим, что длина ее стороны равна 1 м, то есть ее площадь, полученная перемножением длин смежных сторон, равна 1 м × 1 м = 1 м². Если удвоить длины всех ее сторон, увеличить их с 1 до 2 м, то площадь плитки увеличится до 2 м × 2 м = 4 м². Точно так же, если длины сторон утроить (увеличить до 3 м), площадь возрастет до 9 м² – и так далее. Общее правило очевидно: площадь возрастает пропорционально квадрату длины.

Это соотношение остается справедливым не только для квадратов, а для любой двумерной геометрической фигуры, если ее форма остается неизменной при одинаковом увеличении всех линейных размеров. Простой пример дает круг: например, при удвоении его радиуса площадь круга увеличивается в 2 × 2 = 4 раза. В более общем случае удвоение всех линейных размеров вашего дома при сохранении неизменными его формы и конфигурации приведет к увеличению площадей всех поверхностей, например стен и полов, в четыре раза.

Эти же рассуждения можно простым образом перенести на объемы. Для начала рассмотрим простой куб: если длины всех его сторон увеличить в два раза, например с 1 м до 2 м, то его объем увеличится с 1 м³ до 2 × 2 × 2 = 8 м³. Аналогичным образом, если эти длины увеличить втрое, объем возрастет в 3 × 3 × 3 = 27 раз. Как и в случае площади поверхностей, это правило можно обобщить на случай любых объектов произвольной формы, если она сохраняется неизменной, и заключить, что при увеличении любого объекта его объем возрастает пропорционально кубу его линейных размеров

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Рис. 5. Иллюстрация масштабирования объемов и площади поверхностей для простейшего случая квадратов и кубов

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Рис. 6. Прочность балки или конечности пропорциональна площади их поперечного сечения


При удвоении всех длин

Площадь поверхности увеличивается в 2 × 2 = 4 (22) раза

Объем увеличивается в 2 × 2 × 2 = 8 (23) раз


Таким образом, при увеличении размеров объекта его объем увеличивается гораздо быстрее, чем площадь его поверхностей. Приведем простой пример: при удвоении всех линейных размеров дома с сохранением его формы объем увеличивается в 23 = 8 раз, а площадь помещений – всего в 22 = 4 раза. Если взять гораздо более радикальный случай и увеличить все линейные размеры в 10 раз, все площади поверхностей – полов, стен, потолков и так далее – увеличатся в 10 × 10 = 100 раз (то есть стократно), а объемы помещений возрастут много больше, в 10 × 10 × 10 = 1000 раз (то есть тысячекратно).

Это обстоятельство чрезвычайно важно для устройства и деятельности многого из того, что нас окружает, будь то здания, в которых мы живем и работаем, или строение животных и растений природного мира. Например, уровни отопления, охлаждения и освещения в большинстве случаев пропорциональны площади поверхности нагревателей, кондиционеров и окон. Поэтому их производительность растет гораздо медленнее, чем объем помещений, которые требуется отапливать, охлаждать или освещать, поэтому при масштабном увеличении здания его потребности в этом отношении возрастают непропорционально. Сходным образом для крупных животных может быть проблематичным обеспечение рассеяния тепла, выделяемого в результате обмена веществ и физической деятельности, так как площадь поверхности, через которую это тепло рассеивается, у них меньше относительно объема тела, чем у животных более мелких. Например, слоны решили эту проблему, отрастив себе непропорционально большие уши, которые существенно увеличивают площадь поверхности их тела и позволяют рассеивать большее количество тепла.

Весьма вероятно, что принципиальное различие между масштабным увеличением поверхностей и объемов осознавали многие и до Галилея. Его дополнительная новая идея заключалась в объединении этой геометрической истины с осознанием того, что прочность колонн, балок и членов тела определяется величиной площади их поперечного сечения, а не длиной. Так, столб с прямоугольным сечением 4 на 10 см (= 40 см²) может поддерживать вес, в четыре раза больший, чем столб из того же материала, линейные размеры поперечного сечения которого в два раза меньше, то есть 2 на 5 см (= 10 см²) независимо от длин обоих столбов. Первый из них может быть длиной 2 м, а второй – 4, это не имеет значения. Именно поэтому строители, архитекторы и инженеры, занимающиеся строительством, классифицируют пиломатериалы по площади поперечного сечения, а в строительных магазинах их снабжают этикетками типа «40 × 40», «40 × 50», «50 × 50» и так далее.

Однако при масштабном увеличении здания или животного их вес возрастает прямо пропорционально объему – если, конечно, материалы, из которых они состоят, не изменяются и, следовательно, их плотность остается той же. Таким образом, удвоение объема приводит к удвоению веса. Это означает, что вес, который поддерживает колонна или конечность, возрастает значительно быстрее, чем увеличивается прочность: вес (как и объем) масштабируется пропорционально кубу линейных размеров, а прочность увеличивается лишь пропорционально их квадрату. Чтобы проиллюстрировать это положение, представим себе дерево или здание, высота которых увеличивается в 10 раз, а форма остается неизменной. Тогда вес, который необходимо поддерживать, возрастает тысячекратно (в 103 раз), а прочность колонны или ствола, поддерживающих этот вес, – лишь стократно (в 102 раз). Таким образом, способность поддерживать дополнительный вес после такого увеличения оказывается равна всего лишь одной десятой исходной величины. Поэтому произвольное увеличение размеров конструкции, какой бы она ни была, рано или поздно приведет к ее обрушению под собственным весом. Размер и рост имеют пределы.

Иначе говоря, по мере увеличения размеров последовательно уменьшается относительная прочность. Или, если использовать яркий образ, который приводит сам Галилей, «в телах меньших замечается даже относительное увеличение [прочности], так, я думаю, что небольшая собака может нести на себе двух или даже трех таких же собак, в то время лошадь едва ли может нести на спине одну только другую лошадь, равную ей по величине» [26].

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию