Но другой стороной задачи этого исчисления является с точки зрения формальной операции его приложение. А последнее само представляет собой задачу узнать, какое предметное значение (в вышеуказанном смысле) имеет та первоначальная функция, которую мы находим по данной функции, принимаемой за первую [производную]. Может казаться, что с этим учением, взятым само по себе, также покончено уже в дифференциальном исчислении. Однако здесь появляется дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. А именно так как в этом исчислении оказывается, что благодаря первой производной функции уравнения кривой получилось некоторое линейное отношение, то тем самым мы также знаем, что интегрирование этого отношения дает уравнение кривой в виде отношения абсциссы и ординаты; или если бы было дано уравнение для площади кривой, то дифференциальное исчисление должно было бы предварительно научить нас относительно значения первой производной функции такого уравнения, что эта функция представляет ординату как функцию абсциссы, стало быть, представляет уравнение кривой.
Но главное дело здесь в том, какой из моментов определения предмета дан в самом уравнении, ибо лишь от данного может отправляться аналитическая трактовка, чтобы переходить от него к прочим определениям предмета. Дано, например, не уравнение поверхности, образуемой кривою, и не уравнение возникающего посредством ее вращения тела, а также и не уравнение некоторой дуги этой кривой, а лишь отношение абсциссы и ординаты в уравнении самой кривой. Переходы от указанных определений к самому этому уравнению не могут уже поэтому быть предметом самого дифференциального исчисления; нахождение таких отношений есть дело интегрального исчисления.
Но, далее, было уже показано, что дифференцирование уравнения с несколькими переменными величинами дает степенной член разложения (die Entwicklungspotenz)
[67] или дифференциальный коэффициент не как уравнение, а только как отношение; задача состоит затем в том, чтобы в моментах предмета указать для этого отношения, которое есть производная функция, другое равное ему. Напротив, предметом интегрального исчисления является само отношение первоначальной к производной, в этом случае данной функции, и задача состоит в том, чтобы указать значение искомой первоначальной функции в предмете данной первой производной функции или, вернее, так как это значение, например площадь, ограничиваемая кривой или подлежащая ректифицированию, представляемая в виде прямой кривая и т. д., уже высказано как задача, то требуется показать, что такое определение может быть найдено посредством некоторой первоначальной функции, и вместе с тем показать, каков тот момент предмета, который для этой цели должен быть принят за исходную функцию, каковою в данном случае служит производная функция.
Обычный метод, пользующийся представлением бесконечно малой разности, слишком облегчает себе задачу. Для квадратуры кривых линий он принимает бесконечно малый треугольник, произведение ординаты на элемент (т. е. на бесконечно малую часть) абсциссы, за трапецию, имеющую одной своей стороной бесконечно малую дугу, противоположную сказанной бесконечно-малой части абсциссы. Произведение это и интегрируется в том смысле, что интеграл дает сумму бесконечно многих трапеций, ту плоскость, которую требуется определить, т. е. конечную величину сказанного элемента плоскости. И точно так же обычный метод образует из бесконечно малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу.
Этот прием имеет своей предпосылкой то общее открытие, которое лежит в основании этой области анализа и которое здесь выступает в виде положения о том, что квадратура кривой, выпрямленная дуга и т. д. находится к известной (данной уравнением кривой) функции в отношении так называемой первоначальной функции к производной. Здесь дело идет о том, чтобы в случае, если известная часть какого-нибудь математического предмета (например, некоторой кривой) принимается за производную функцию, узнать, какая другая его часть выражается соответствующей первоначальной функцией. Мы знаем, что если данная уравнением кривой функция ординаты принимается за производную функцию, то соответствующая ей первоначальная функция есть выражение величины отрезанной этой ординатой и кривой плоскости, что если как производная функция рассматривается известное определение касательной, то ее первоначальная функция выражает величину соответствующей этому определению дуги и т. д. Однако заботу о том, чтобы узнать и доказать, что эти отношения – отношение первоначальной функции к производной и отношение величин двух частей или двух обстоятельств математического предмета – образуют пропорцию, – заботу об этом снимает с себя метод, пользующийся бесконечно малым и механически оперирующий им. Своеобразной заслугой является уже то остроумие, с которым на основании результатов, известных уже заранее из других источников, этот метод открывает, что известные и именно такие-то стороны математического предмета находятся между собою в отношении первоначальной функции к производной.
Из этих двух функций производная или, как она была определена выше, функция возвышения в степень есть здесь в интегральном исчислении, данная по отношению к первоначальной функции, которая еще должна быть найдена из нее путем интегрирования. Однако первая дана не непосредственно, а равно не дано уже само по себе, какая часть или какое определение математического предмета должно быть рассматриваемо как производная функция, дабы через приведение этого определения к первоначальной функции найти другую часть или другое определение предмета, то определение, величину которого требуется установить. Обычный метод, сразу же представляющий, как мы сказали, известные части предмета как бесконечно малые в форме производных функций, находимых из первоначально данного уравнения предмета вообще посредством дифференцирования (как, например, для выпрямления кривой бесконечно малые абсциссы и ординаты), принимает за таковые те части или определения, которые можно привести в такую связь с предметом задачи (в нашем примере с дугой), также представляемым как бесконечно малый, которая установлена элементарной математикой, благодаря чему, если известны означенные части, то определяется также и та часть, величину которой требуется найти; так, например, для выпрямления кривой указанные три бесконечно малых приводятся в связь уравнения прямоугольного треугольника, для ее квадратуры ордината и бесконечно-малая абсцисса приводятся в связь некоторого произведения, причем площадь принимается вообще за арифметическое произведение линий. Переход от этих так называемых элементов площади, дуги и т. д. к величине самих площадей, дуги и т. д. считается тогда лишь восхождением от бесконечного выражения к конечному или к сумме бесконечно многих элементов, из которых, согласно предположению, состоит искомая величина.