Нельзя отрицать, что в этой области многое, преимущественно при помощи тумана, напущенного бесконечно малыми, было допущено в качестве доказательства ни на каком другом основании, как только потому, что то, что получалось, всегда было заранее известно, и доказательство, построенное таким образом, что получался уже известный вывод, давало по крайней мере видимость некоторого остова доказательства, видимость, которую все же предпочитали простой вере или опытному знанию. Но я, не колеблясь, решаюсь сказать, что рассматриваю эту манеру только как простое фокусничество и шарлатанничание доказательствами и причисляю к такого рода фокусничанию даже Ньютоновы доказательства, и в особенности те из них, которые принадлежат к только что приведенным, за которые превозносили Ньютона до небес и ставили выше Кеплера, утверждая, что первый доказал математически то, что второй нашел лишь опытным путем.
Пустой остов таких доказательств был воздвигнут с целью доказать физические законы. Но математика вообще не может доказать количественных определений физики, поскольку они суть законы, имеющие своим основанием качественную природу моментов; математика не может этого сделать по той простой причине, что она не есть философия, не исходит из понятия, и поэтому качественное, поскольку оно не почерпается лемматически из опыта, лежит вне ее сферы. Отстаивание чести математики, настаивание на том, что все встречающиеся в ней положения должны быть строго доказаны, заставляло ее часто забывать свои границы. Так, например, казалось противным ее достоинству просто признать опыт источником и единственным доказательством встречающихся в ней опытных положений. Позднее было достигнуто более определенное сознание этой истины; но до тех пор, пока сознание не уяснит себе различие между тем, что может быть доказано, и тем, что может быть лишь заимствовано из другого источника, равно как и различие между тем, что представляет собою лишь член аналитического разложения, и тем, что представляет собою физическое существование, до тех пор научность не сможет достигнуть строгой и чистой позиции. А что касается указанного остова Ньютоновых доказательств, то его, без сомнения, еще настигнет такой же справедливый суд, который настиг другое необоснованное искусственное построение Ньютона, состоявшее из оптических экспериментов и связанных с ними умозаключений. Прикладная математика еще полна такого рода варевом из опыта и рефлексии. Но подобно тому, как уже с довольно давних пор стали фактически игнорировать в науке одну часть ньютоновской оптики за другой, причем, однако, совершают ту непоследовательность, что продолжают держаться, хотя и в противоречии с этим, прочих частей ее, точно так же является фактом, что часть упомянутых обманчивых доказательств уже сама собою пришла в забвение или заменена другими доказательствами.
Примечание 2. Цель дифференциального исчисления, выведенная из его приложения
В предшествующем примечании мы рассмотрели отчасти определенность понятия бесконечно малого, применяемого в дифференциальном исчислении, отчасти же основу его введения в последнее. И то и другое суть абстрактные и потому сами по себе также и легкие определения. Так называемое приложение представляет больше трудностей, равно как и более интересную сторону; элементы этой конкретной стороны составят предмет настоящего примечания. Весь метод дифференциального исчисления полностью дан в положении, что dxn=dxn -1dx или (ƒ(x+i)-ƒx)/i=P, т. е. равняется коэффициенту первого члена двучлена (x+dx)n или (x+i)n
[62], разложенного по степеням dx или i. Дальше нечему учиться новому; вывод ближайших форм, дифференциала произведения, показательной функции и т. д. получается из этой формулы механически; в короткое время, в каких-нибудь полчаса, с нахождением дифференциалов дано также и обратное, нахождение первоначальной функции на основании дифференциалов, интегрирование – можно овладеть всей теорией. Задерживает на ней дальше лишь старание усмотреть, сделать для себя понятным, каким образом после того, как одна сторона задачи, нахождение этого коэффициента, решена так легко аналитическим, т. е. совершенно арифметическим, способом, посредством разложения функции переменной величины, получившей через приращение форму двучлена, оказывается правильной также и другая сторона, а именно отбрасывание всех членов возникающего ряда, кроме первого. Если бы оказалось, что единственно только этот коэффициент и нужен, то с его нахождением было бы покончено, как мы сказали, менее чем в полчаса со всем, что касается теории, и отбрасывание прочих членов ряда представляло бы так мало затруднений, что скорее, наоборот, о них как о членах ряда (как второй, третьей и т. д. производной функции, их определение равным образом уже закончено с определением первого члена) вовсе и не было бы речи, так как в них совершенно нет надобности.
Можно здесь предпослать то замечание, что по методу дифференциального исчисления сразу видно, что он изобретен и установлен не как нечто самодовлеющее; он не только не обоснован сам по себе, как особый способ аналитического действия, но насильственность, заключающаяся в том, что прямо отбрасываются члены, получающиеся посредством разложения функции, несмотря на то что все это разложение признается полностью относящимся к делу – ибо дело именно и усматривается в различии разложенной функции переменной величины (после того как ей придана форма двучлена) от первоначальной функции, – скорее совершенно противоречит всем математическим принципам. Как потребность в таком образе действий, так и отсутствие внутреннего его оправдания сразу же указывают на то, что его источник и основание находятся где-то вне его. Это не единственный случай в науке, когда то, что в качестве элементарного ставится вначале и из чего, как предполагается, должны быть выведены положения данной науки, оказывается неочевидным и имеющим, наоборот, свой повод и обоснование в последующем. История возникновения дифференциального исчисления показывает, что оно получило свое начало преимущественно в различных так называемых методах касательных, которые представляли собою как бы кунштюки; характер действия после того, как он был распространен также и на другие предметы, был осознан позднее и получил выражение в абстрактных формулах, которые теперь старались также возвести в ранг принципов.
Мы показали выше, что определенность понятия так называемых бесконечно малых есть качественная определенность таких количеств, которые ближайшим образом, как определенные количества, положены находящимися в отношении друг к другу, а затем в связи с этим следовало эмпирическое исследование, ставившее себе целью обнаружить эту определенность понятия в тех имеющихся описаниях или дефинициях бесконечно малого, которые берут его как бесконечно малую разность и тому подобное. Мы это сделали лишь для того, чтобы достигнуть абстрактной определенности понятия как таковой. Дальнейший вопрос состоит в том, какой характер носит переход от нее к математической форме и ее приложению. Для этой цели нужно сначала еще далее развить теоретическую сторону, определенность понятия, которая окажется в себе самой не совсем бесплодной; затем следует рассмотреть отношение ее к приложению и доказать относительно их обоих, насколько это здесь уместно, что получающиеся общие выводы вместе с тем соответствуют тому, что является существенным в дифференциальном исчислении, и тому способу, каким оно достигает своей цели.