Почему небо темное. Как устроена Вселенная - читать онлайн книгу. Автор: Владимир Решетников cтр.№ 21

читать книги онлайн бесплатно
 
 

Онлайн книга - Почему небо темное. Как устроена Вселенная | Автор книги - Владимир Решетников

Cтраница 21
читать онлайн книги бесплатно

Примерно так и действовал Сендидж. Он рассмотрел несколько скоплений галактик на z ~ 1 и сравнил поверхностные яркости наблюдаемых в них эллиптических галактик с данными для подобных галактик вблизи нас. Для корректности сравнения Сендиджу пришлось учесть ожидаемую эволюцию яркостей галактик за счет «пассивной» эволюции составляющих их звезд, однако эта поправка в настоящее время определяется вполне надежно. Результаты оказались однозначными — поверхностная яркость галактик изменяется пропорционально 1/(1 + z )4 и, следовательно, Вселенная расширяется. Модель стационарной Вселенной со «стареющими» фотонами не удовлетворяет наблюдениям.

Еще один интересный тест был также предложен очень давно, а реализован лишь относительно недавно. Фундаментальным свойством расширяющейся Вселенной является кажущееся замедление времени у далеких объектов. Чем дальше от нас в расширяющейся Вселенной находятся часы, тем медленнее, как нам кажется, они идут — на больших z длительность всех процессов кажется растянутой в (1 + z ) раз (рис 22). (Этот эффект подобен релятивистскому замедлению времени в специальной теории относительности.) Поэтому, если найти такие «часы», которые можно наблюдать на больших расстояниях, то можно непосредственно проверить реальность расширения Вселенной.

Почему небо темное. Как устроена Вселенная

Рис. 22. Импульсы, испущенные далеким объектом на красном смещении z с интервалом в 1 секунду, доберутся до нас с интервалами 1 + z секунд.

В 1939 году американский астроном Олин Вилсон опубликовал заметку, в которой он отметил удивительное постоянство формы кривых блеска сверхновых звезд (см. пример кривой блеска сверхновой Тихо Браге на рис. 4, а также рис. 23) и предложил использовать эти кривые в качестве «космологических часов». Вспышка сверхновой — это один из самых мощных катастрофических процессов во Вселенной. В ходе такой вспышки звезда со скоростью ~ 104 км/с сбрасывает оболочку с массой, сравнимой с массой Солнца. При этом звезда становится ярче в десятки миллионов раз, и в максимуме блеска она способна затмить всю галактику, в которой она вспыхнула. Столь яркий объект, естественно, виден на очень больших, космологических расстояниях. Как можно использовать кривые блеска сверхновых в качестве «часов»? (Их можно использовать и в качестве «стандартной свечи», но об этом я расскажу чуть позже.) Во-первых, не все сверхновые одинаковы по своим наблюдательным проявлениям и по кривым блеска. Их делят на два типа (I и II), а те в свою очередь подразделяют на несколько подтипов. В дальнейшем мы будем обсуждать только кривые блеска сверхновых типа Ia. Во-вторых, даже у этого типа звезд кривые блеска на первый взгляд выглядят очень разнообразными и совсем не очевидно, что с ними можно сделать. Например, на рисунке 23 показаны наблюдаемые кривые блеска нескольких близких сверхновых типа Ia. Эти кривые довольно сильно отличаются: например, светимости показанных на рисунке звезд в максимуме блеска различаются почти в три раза.

Почему небо темное. Как устроена Вселенная

Рис. 23. Кривые блеска SN Ia: на верхнем рисунке показаны наблюдаемые кривые, на нижнем они сведены в одну с учетом корреляции между формой кривой блеска и светимостью сверхновой в максимуме. По горизонтальной оси отложены дни после максимума блеска, по вертикальной — абсолютная звездная величина (мера светимости). По данным проекта Calan-Tololo Supernova Survey

Ситуацию спасает то, что разнообразие форм наблюдаемых кривых блеска подчиняется четкой корреляции: чем ярче SN в максимуме, тем более плавно затем спадает ее яркость. Эта зависимость была открыта советским астрономом Юрием Псковским еще в 1970-х годах и позднее — уже в 1990-х — была подробно изучена другими исследователями. Оказалось, что с учетом этой корреляции кривые блеска SN Ia удивительно однородны (см. рис. 23) — например, разброс светимостей SN Ia в максимуме блеска составляет лишь около 10 %! Следовательно, изменение блеска у SN Ia может рассматриваться как стандартный процесс, длительность которого в локальной системе отсчета хорошо известна. Использование этих «часов» показало, что у далеких сверхновых (сейчас обнаружено уже несколько десятков SN с z > 1) изменения видимого блеска и спектра замедлены на множитель (1 + z ). Это является непосредственным и очень сильным аргументом в пользу реальности космологического расширения. Еще одним аргументом является согласие возраста Вселенной, получаемого в рамках модели расширяющейся Вселенной, с возрастом реально наблюдаемых объектов. Расширение означает, что с течением времени расстояния между галактиками увеличиваются. Мысленно обратив этот процесс вспять, мы приходим к выводу, что это глобальное расширение должно было когда-то начаться. Зная текущий темп расширения Вселенной (он определяется значением постоянной Хаббла) и баланс плотностей составляющих ее подсистем (обычное вещество, темная материя, темная энергия), можно найти, что расширение началось примерно 14 миллиардов лет назад. Значит, мы не должны наблюдать в нашей Вселенной объекты с возрастом, превышающим эту оценку.

Но как можно найти возраст космических объектов? По-разному. Например, с помощью радиоактивных «часов» — методами ядерной космохронологии, которые позволяют оценивать возраст объектов путем анализа относительной распространенности изотопов с большими периодами полураспада. Изучение содержания изотопов в метеоритах, в земных и лунных породах показало, что возраст Солнечной системы близок к 5 млрд лет. Возраст Галактики, в которой находится наша Солнечная система, конечно, больше. Его можно оценить по времени, которое необходимо для образования наблюдаемого в Солнечной системе количества тяжёлых элементов. Расчеты показывают, что синтез этих элементов должен был продолжаться в течение ~ 5 млрд лет до образования Солнечной системы. Следовательно, возраст окружающих нас областей Млечного Пути близок к 10 млрд лет.

Другой способ датирования Млечного Пути основан на оценке возраста составляющих его старейших звезд и звездных скоплений. Этот метод основан на теории звездной эволюции, хорошо подтвержденной разнообразными наблюдениями. Результат этого подхода — возраст различных объектов Галактики (звезд, шаровых скоплений, белых карликов и пр.) не превышает ~10–15 млрд лет, что согласуется с современными представлениями о времени начала космологического расширения.

Возраст других галактик определить, конечно, сложнее, чем возраст Млечного Пути. У далеких объектов мы не видим отдельные звезды и вынуждены изучать лишь интегральные характеристики галактик — спектры, распределение яркости и пр. Эти интегральные характеристики складываются из вкладов огромного числа составляющих галактики звезд. Кроме того, наблюдаемые характеристики галактик сильно зависят от наличия и распределения в них межзвездной среды — газа и пыли. Все эти трудности преодолимы и современные астрономы научились восстанавливать истории звездообразования, которые должны были привести к наблюдаемым в настоящее время интегральным характеристикам галактик. У галактик разных типов эти истории различны (например, эллиптические галактики возникли в ходе мощной одиночной вспышки звездообразования много миллиардов лет назад, в спиральных галактиках звезды рождаются и в настоящее время), однако не обнаружено галактик, начало звездообразования в которых превышало бы возраст Вселенной. Кроме того, наблюдается вполне определенный, ожидаемый для реально расширяющейся Вселенной, тренд — чем дальше по z мы забираемся во Вселенную, то есть переходим к все более ранним этапам ее эволюции, тем, в среднем, более молодые объекты мы наблюдаем.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию