Почему небо темное. Как устроена Вселенная - читать онлайн книгу. Автор: Владимир Решетников cтр.№ 20

читать книги онлайн бесплатно
 
 

Онлайн книга - Почему небо темное. Как устроена Вселенная | Автор книги - Владимир Решетников

Cтраница 20
читать онлайн книги бесплатно

Артур Конан Дойл

Почему все так уверены, что Вселенная действительно расширяется? В научной литературе реальность расширения уже почти не обсуждается, так как профессиональные ученые, знающие проблему во всей ее полноте, в этом практически не сомневаются. Активные обсуждения этого вопроса часто вспыхивают на разного рода интернет-форумах, где представители так называемой «альтернативной науки» (в противовес «ортодоксальной») снова и снова пытаются «изобрести велосипед» и найти другое, не связанное с удалением объектов, объяснение наблюдаемому в спектрах галактик красному смещению. Такие попытки, как правило, основаны на незнании того, что, помимо красного смещения, есть и другие свидетельства в пользу реальности космологического расширения. Строго говоря, стационарность Вселенной была бы гораздо большей проблемой для науки, чем ее расширение!

Современная наука представляет собой плотно сотканную ткань взаимосвязанных результатов или, если угодно, постоянно строящееся здание, из основания которого уже нельзя вытащить ни один из кирпичей без того, чтобы все здание не рухнуло. Расширение Вселенной и созданная на его основе картина строения и эволюции Вселенной и составляющих ее объектов — один из таких базовых результатов современной науки.

Но сначала несколько слов о недоплеровской интерпретации красного смещения. Вскоре после открытия зависимости z от расстояния возникла — и это вполне естественно — идея, что красное смещение может быть связано не с удалением объектов, а с тем, что по пути от далеких галактик часть энергии фотонов теряется и, следовательно, длина волны излучения увеличивается, оно «краснеет». Приверженцами такой точки зрения были, к примеру, один из основоположников астрофизики в России А. А. Белопольский, а также Фриц Цвикки — один из самых нестандартно мыслящих и плодотворных астрономов XX века. К подобному объяснению z время от времени склонялся и сам Хаббл. Вскоре, однако, выяснилось, что подобные процессы потери энергии фотонами должны сопровождаться размыванием изображений источников (чем дальше галактика, тем сильнее размытие), что не наблюдалось. Другой вариант этого сценария, как было показано советским физиком М. П. Бронштейном, предсказывал, что эффект покраснения должен быть разным в разных частях спектра, то есть он должен зависеть от длины волны. К началу 60-х годов XX века развитие радиоастрономии закрыло и эту возможность — для данной галактики величина красного смещения оказалась не зависящей от длины волны. Знаменитый советский астрофизик В. А. Амбарцумян еще в 1957 году резюмировал ситуацию с разными вариантами интерпретации красного смещения таким образом: «Все попытки объяснить красное смещение каким-либо механизмом, отличным от принципа Доплера, окончились неудачей. Эти попытки вызывались не столько логической или научной необходимостью, сколько известным страхом… перед грандиозностью самого явления…».

Рассмотрим теперь несколько наблюдательных тестов, поддерживающих картину глобального космологического расширения Вселенной. Первый из них был предложен еще в 1930 году американским физиком Ричардом Толменом. Толмен обнаружил, что так называемая поверхностная яркость объектов будет вести себя по-разному в стационарной и в расширяющейся Вселенной.

Поверхностная яркость — это просто энергия, излучаемая единицей площади объекта в единицу времени (например, за секунду) в каком-нибудь направлении или, более точно, в единице телесного угла. В стационарной Вселенной, в которой причиной красного смещения является какой-то неизвестный закон природы, приводящий к уменьшению энергии фотонов по пути к наблюдателю («старение» или «усталость» фотонов), поверхностная яркость объекта должна уменьшаться пропорционально величине 1 + z . Это означает, что, если галактика находится на таком расстоянии, что для нее z = 1, то она должна выглядеть в два раза тусклее по сравнению с такими же галактиками вблизи нас, то есть при z = 0.

В расширяющейся Вселенной зависимость яркости (имеется в виду болометрическая, то есть полная, просуммированная по всему спектру, яркость) от красного смещения становится гораздо сильнее — она спадает как (1 + z )4. В этом случае объект с z = 1 будет выглядеть уже не в 2, а в 16 раз более тусклым. Причиной столь сильного падения яркости является то, что, помимо уменьшения энергии фотонов из-за красного смещения, при реальном удалении галактик начинают работать дополнительные эффекты. Так, каждый новый фотон, испускаемый далекой галактикой, будет добираться до наблюдателя с все большего расстояния и тратить на дорогу все большее время. Интервалы между приходами фотонов возрастут и, значит, за единицу времени на приемник излучения будет попадать меньше энергии и наблюдаемая нами галактика будет казаться слабее. Кроме того, в случае реального расширения зависимость углового размера галактики от z будет другой, чем для стационарной Вселенной, что также приводит к изменению ее наблюдаемой поверхностной яркости.

Тест Толмена выглядит очень простым и наглядным — действительно, достаточно взять два сходных объекта на разных красных смещениях и сравнить их яркости. Однако технические сложности его осуществления таковы, что применить этот тест смогли лишь относительно недавно — в девяностых годах XX века. Сделал это ученик и последователь Хаббла знаменитый американский астроном Алан Сендидж [13]. Совместно с разными коллегами Сендидж опубликовал целую серию статей, в которых он рассмотрел тест Толмена для далеких эллиптических галактик.

Эллиптические галактики примечательны тем, что они относительно просто устроены. В первом приближении их можно представить как гигантские конгломераты родившихся практически одновременно звезд, имеющие сглаженное, без каких-либо особенностей, крупномасштабное распределение яркости (ярчайшие галактики на рис. 16 относятся как раз к этому типу). У эллиптических галактик существует простое эмпирическое соотношение, связывающие воедино их основные наблюдательные характеристики — размер, поверхностную яркость и разброс скоростей звезд вдоль луча зрения. (При определенных допущениях это соотношение является следствием предположения об устойчивости эллиптических галактик.) Разные двумерные проекции этой трехпараметрической зависимости также показывают хорошую корреляцию например, существует зависимость между размером и яркостью галактик. Значит, сравнивая эллиптические галактики одного характерного линейного размера на разных z, можно реализовать тест Толмена.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию