Она смеется, как мать - читать онлайн книгу. Автор: Карл Циммер cтр.№ 122

читать книги онлайн бесплатно
 
 

Онлайн книга - Она смеется, как мать | Автор книги - Карл Циммер

Cтраница 122
читать онлайн книги бесплатно

После этого – первого – случая ученые обнаружили и другие наследственные болезни, частично вылеченные «с помощью» мозаицизма. В списке сейчас присутствуют наследственные формы других кожных заболеваний, анемия, болезни печени и мышечная дистрофия. Из-за растущего количества задокументированных случаев вызывающего болезни или, напротив, исцеляющего мозаицизма в полный рост встал вопрос – а насколько люди в целом мозаичны? Чтобы получить окончательный ответ, надо разделить человека на 37 трлн клеток и секвенировать всю ДНК в каждой из них. Пока ученые только как бы пристреливаются. Но даже эти предварительные исследования ведут к четкому выводу: мы все мозаичны и были такими с самого начала.

В первые несколько дней существования эмбриона более половины его клеток оказываются с неправильным количеством хромосом, случайно потеряв одну или получив лишнюю [837]. Многие из подобных несбалансированных клеток либо не могут делиться, либо делают это слишком медленно. Их первоначальное количество со временем сокращается, в то время как здоровые клетки дают начало многим другим. Если набор хромосом слишком ненормален – такое состояние называется «анеуплоидия», – то организм матери почувствует что-то неправильное и отторгнет эмбрион [838].

Однако на удивление много эмбрионов способно выживать, несмотря на наличие определенного разнообразия в их хромосомах [839]. Маркус Громп, биолог из Орегонского университета здоровья и науки, вместе с коллегами изучал клетки печени детей и взрослых, не имевших заболеваний этого органа и умерших, как правило, внезапно вследствие утопления, инсульта, огнестрельного ранения и аналогичных причин [840]. От четверти до половины их клеток были анеуплоидными, обычно с отсутствием копии одной из хромосом.

Квалифицированный специалист может обнаружить анеуплоидные клетки с помощью микроскопа. Для поиска более мелких мутаций, таких как короткие делеции, дупликации или однонуклеотидные замены, требуются более сложные технологии. К примеру, в 2017 г. исследователи из английского Института Сенгера выполнили полногеномное секвенирование иммунных клеток, полученных от 247 женщин. У каждой женщины они выявили около 160 соматических мутаций, присутствующих во многих клетках.

Поскольку подобные соматические мутации оказались широко распространены, исследователи предположили, что они возникли на ранних этапах развития. Чтобы проверить это предположение, они секвенировали геномы клеток из других тканей этих женщин. Большинство таких мутаций нашлось также в других клетках. Исходя из этого, ученые Института Сенгера подсчитали, что в эмбрионе возникает две-три новые мутации каждый раз, когда какая-то его клетка удваивается. Раз возникнув, эти мутации передаются потомкам клетки, в итоге получается мозаицизм [841].

Кристофер Уолш, гарвардский генетик, изучающий проявления мозаицизма в мозге, заинтересовался, насколько широко он распространен в наших нейронах. Чтобы это выяснить, он с коллегами раздобыл образцы тканей мозга трех человек, которым проводили нейрохирургические операции. Из каждого образца он выделил по дюжине нейронов и секвенировал геном каждого из них. Затем исследователи занялись поиском соматических мутаций, которые отличали бы этот нейрон от других клеток мозга и от остального организма.

Уолш обнаружил, что все нейроны мозаичны. Каждый был уникален и отличался от клеток других частей тела примерно на 1500 однонуклеотидных замен. Эти мутации накапливались постепенно в процессе деления многих поколений клеток. Недавние мутации были лишь у небольшого количества нейронов, возникшие давно наблюдались сразу у многих.

Исследователь быстро осознал, что сможет использовать эти мутации для определения происхождения клеток в мозге [842]. В отличие от Конклина, который наблюдал за ростом линий клеток, Уолш предпочел действовать как генеалог и прослеживать судьбу клеток в обратном направлении – назад в утробу.

Чтобы проделать этот путь, Уолш с коллегами изучил 17-летнего подростка, погибшего в автомобильной катастрофе. Семья мальчика не возражала, чтобы его тело использовали для научных исследований. Уолш получил замороженные кусочки мозга, и его группа выделила 136 нейронов из этой ткани. Затем они выполнили полногеномное секвенирование каждой клетки. Чтобы получить материал для сравнения, они также секвенировали ДНК из других органов – сердца, печени и легких.

Проверив триллионы оснований, определенных в результате секвенирования, ученые обнаружили сотни соматических мутаций в каждом нейроне. Многие мутации имелись сразу в нескольких – но не все. Некоторые обнаруживались лишь в небольшом количестве нейронов, а были и уникальные, характерные лишь для конкретной клетки. Исследователи использовали эти сведения, чтобы нарисовать генеалогическое древо мозга, соединив каждый нейрон сначала с его ближайшими родственниками, а затем с более дальними. Уолш с коллегами обнаружил пять разных клеточных линий, внутри которых клетки имели схожие мозаичные особенности.

Общие мутации, должно быть, возникли на стадии эмбрионального развития, когда нервные клетки в мозге могли быстро делиться. Но Уолш узнал еще больше о развитии мозга мальчика, сравнив нейроны с клетками из других органов. Одна линия нейронов имела общие мутации с клетками сердца. Другие – с клетками других органов.

На основе этих результатов Уолш с коллегами восстановил биографию мозга погибшего. Когда этот человек представлял собой всего лишь шарообразный эмбрион, возникло пять линий клеток, у каждой из которых был свой особенный набор соматических мутаций. Клетки из этих линий мигрировали в разных направлениях, превратившись в разные органы – и в том числе в мозг.

Клетки, которые объединились, чтобы стать мозгом, дали начало нейронам. И эти новые нейроны перемещались по всему мозгу, прежде чем осесть и разделиться еще несколько раз. Поэтому Уолш с коллегами обнаружил рядом друг с другом нейроны из разных линий. В итоге в мозге мальчика оказались миллионы маленьких кусочков, образованных родственными клетками.

Когда-то проявления мозаицизма служили пищей для суеверий или дорогой в цирк уродов. Затем его признали заболеванием – сначала редким, потом частым. Сейчас мы можем видеть ее повсюду. Один геном более не может характеризовать нас полностью, поскольку наследственность внутри нас играет с ДНК, изменяя почти каждый кусочек полученного генетического материала. Даже внутри нашего черепа растет ведьмина метла.

Глава 13
Химеры

В 1779 г. Джон Хантер отправил в Королевское общество письмо. Он описывал в нем необычных коров. Если у самки рождаются близнецы разного пола, писал Хантер, «бычок, вырастая, становится самым что ни на есть бычком» [843]. А телочки при этом получаются совсем неправильными. «Известно, что они не размножаются: они не проявляют никакой расположенности к быку, и бык ими даже не интересуется», – пояснял Хантер.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию