Если бы инженера-электрика попросили опутать проводкой Солнечную систему, он столкнулся бы с немалыми трудностями».
Нервы должны были работать как-то иначе. Электрический ток не мог протекать посередине аксонов — электрические искорки, которые по представлениям Александера Белла катили по медному проводу его телефона, там пройти не могли. Вместо этого нервы должны были подпитываться со стороны, получая регулярные всплески дополнительного напряжения от чего-то, находящегося снаружи. Все выглядело так, точно инженер, понимавший, что поддерживать постоянный уровень сигнала в длинном проводе будет трудно, предусмотрительно установил вдоль него — через равные промежутки — несколько триллионов подпитывающих устройств.
Вот ими-то и были огромные ионы натрия. Они помогали прохождению нервного сигнала. (Дальнейшие исследования показали, что для проводимости нервных волокон не менее важны и ионы калия, но, поскольку работают они аналогичным образом, мы будем для простоты держаться за натрий.) Когда у нас рождается мысль и нервная клетка нашего мозга выстреливает сигнал, он, не будь этих заряженных ионов натрия, протискивающихся снаружи внутрь клетки, заглох бы, не пройдя и доли миллиметра. Ходжкин и Хаксли показали — и это принесло им Нобелевскую премию, — что клеточная мембрана отнюдь не является сплошным эластичным барьером, непроницаемым и замкнутым, держащим наши мысли под запором в уютных фрейдистских глубинах. Нет, она, скорее, вмещает множество маленьких брешей, которые расширяются, чтобы пропускать ионы натрия. В большом количестве им просачиваться внутрь не приходится — лишь по нескольку тысяч на каждый миллиметр, — но этого хватает.
Все, что запускает натриевые подпитывающие устройства, порождает сигнал. К примеру, в глазах человека, который смотрит на экран компьютера, излучаемые экраном электрические волны ударяют в обладающие замысловатой формой молекулы содержащегося в сетчатке вещества, именуемого родопсином. Представьте себе эти молекулы как некие подобия пальм. Когда на них падает свет, молекулы скручиваются, точно листья пальмы под ударом тайфуна, и часть родопсина — «корни» пальмы — начинает вытягиваться «из земли». А поскольку родопсиновое дерево уходит корнями в раствор из ионов натрия, в основании каждого дерева образуются бреши. Ионы натрия вливаются в них, достигая лежащего ниже нерва, и это порождает сигнал.
При первом ударе натрия по самому кончику нерва с ближайшим миллиметром нервной мембраны происходит нечто странное: она начинает коробиться, пузыриться, искривляться, а затем в ней открываются отверстия, через которые внутрь вливаются ионы натрия. Их появление внутри нервной клетки приводит в такое же состояние следующий участок мембраны — и в нем тоже открываются отверстия. Натрий, скопившийся на мембране, проникает и в этот участок — и такая последовательность событий повторяется по всей длине нерва.
После того как сигнал проходит по всему нерву, нерв этот обращается в подобие грязной, раскисшей губки, покрытой дырами и пропитанной натрием. Прежде чем он снова сможет заработать, ему необходимо восстановиться — извергнуть из себя излишки натрия и закрыть отверстия. Этот процесс — вывод ионов натрия на внешнюю поверхность мембраны и закупорка отверстий, через которые они могут просочиться внутрь, — требует таких энергетических затрат, что 8о процентов поступающей в наш мозг энергии, весь сахар и кислород, все питательные остатки бифштексов, мюслей, засахаренных овсяных хлопьев и шоколадок, уходят именно на то, чтобы закупорить отверстия, через которые в нервные клетки просачивается натрий.
Иногда восстановление нервных клеток замедляется. На холоде ваши пальцы становятся словно деревянными. Это происходит потому, что жировая оболочка их нервных клеток застывает, совершенно так же, как оставшийся на тарелке жир съеденной вами бараньей котлеты. В результате натриевые насосы нервных клеток начинают работать хуже, чем они работают в тепле. Именно поэтому нам необходимо согреться перед тем, как заняться каким-либо делом, требующим изощренного управления нашими двигательными нервами. Великий пианист Глен Гульд, бывало, не находил себе перед концертом места, пока ему не удавалось отыскать раковину умывальника или просто ведро с горячей водой, в которую он мог окунуть руки. Критики посмеивались над ним — пока он не усаживался за инструмент. После того как застывшая жировая оболочка его нервных клеток размягчалась и открывался путь для насыщенных электрической энергией ионов натрия, шедевры Баха обращались в шедевры Гульда. (Аналогичным образом — только наоборот — работают и кубики льда, которые прикладывают к мочкам ушей перед тем, как их проколоть.)
Однако случаются проблемы и более серьезные, чем порывы холодного ветра. Жидкость, именуемая тетродотоксином, представляет собой один из сильнейших в мире ядов, воздействующих на нервные клетки. Омывая их, она намертво отключает натриевые насосы. Если воздействие ее ограничивается лишь немногими нервными клетками, скажем, теми, работа которых требуется нам, чтобы отыскать запропастившийся невесть куда пульт телевизора, это еще полбеды. Но когда тетродотоксин разливается по всему нашему телу, он воздействует и на нервные клетки, которые посылают сигналы в наше сердце и легкие. Мы можем так или иначе осознавать это, можем вслушиваться в работу своего тела и искреннейшим образом желать, чтобы наши нервные клетки продолжали исправно работать, однако, когда натриевые насосы перекрываются и ионы, подпитывающие клетки, в них не попадают, электрические сигналы в клетках замирают. И все заканчивается смертью от удушья. В природе тетродотоксин вырабатывается страшной японской рыбой — фугу, однако его также синтезируют по всему миру и производители химического оружия.
Примерно так же работает алкоголь. Под его воздействием жировая оболочка мембран нервных клеток уплотняется, но не настолько, чтобы вызвать мгновенную смерть. Результат походит, скорее, на онемение замерзших пальцев, только на этот раз начинают плохо работать мембраны клеток, находящихся в глубине нашего мозга и ведающих нашими мыслями и воспоминаниями. Для тех, кто, по словам Сэмюэла Джонсона, стремится сбежать от самих себя, ослабление стенок, в которых работают питающие клетки электричеством натриевые насосы, оказывается большим утешением.
Технология всегда развивается быстрее, чем наука, и люди с удовольствием использовали алкоголь и — если им хватало ума — избегали рыб фугу за тысячи лет до того, как стали известными подробности работы натриевых насосов. То же относится и к ранним попыткам использования обезболивающих средств. Нужда в них была огромной, однако алкоголь плохо снимал боль при хирургических операциях, и даже в середине девятнадцатого века большим больницам приходилось прибегать к услугам крепких «держиморд», бывших портовых грузчиков или боксеров, работа которых состояла в том, чтобы ловить удиравших из операционной пациентов и приволакивать их обратно. (Флобер, сын хирурга, работавшего в не ведавшую анестезии эпоху, дал в «Мадам Бовари» страшноватенькое описание того, как протекала в ту пору ампутация ноги.)
В анестезиологии перемены обозначились в начале и середине 1800-х, когда выяснилось, что разного рода газообразные вещества — эфир, к примеру. — способны отключать сознание пациента, далеко не всегда при этом убивая его. Зигмунд Фрейд, бывший в 1880-х студентом-медиком, любил экспериментировать с модифицированным экстрактом растительного сока, именуемым кокаином. Кокаин превосходно помогал при глазных операциях, а также доставлял немалое удовольствие хирургам, которые проверяли на себе — и порой довольно часто — правильность выбранной ими дозы.