Однако механизм анестезии стал понятным только после работы, проделанной Ходжкиным и Хаксли. Молекулы обезболивающего вещества проникают, подобно молекулам алкоголя, в жировые мембраны наших нервных клеток и отключают натриевые насосы аксонов. После этого можно выдергивать щипцами коренные зубы или сшивать иглой живые ткани — нервные импульсы, благодаря которым мозг осознает эти надругательства над телом, продвигаются от силы на сантиметр и, поскольку натриевые насосы отключены, выдыхаются. По мере того как становились ясными все более тонкие детали их работы — и различные виды воздействия местной и общей анестезии, — все в большей степени совершенствовалась и медицина. Становились возможными такие серьезные операции, как коронарное шунтирование; появились средства, позволявшие производить лапароскопические операции. В распоряжении инженеров викторианской эпохи имелись лишь большие электрические двигатели, которые использовались ими для подъема лифтов, приведения в действие станков и насосов холодильников. Сегодняшние биоинженеры используют микроскопические электрические насосы, перекачивающие ионы натрия, для управления куда более тонкими процессами, протекающими внутри человеческого тела.
Ходжкин одурманивать своих кальмаров никогда не пытался, однако его коллеги накачивали их тетродотоксином (выглядит это некрасиво, но с учетом необходимости извлечения из тела кальмара нервных волокон возражения против такого рода манипуляций становятся спорными). Им удалось, нанося тетродотоксин непосредственно на нервные клетки и наблюдая за тем, как они отключаются, точно уловить момент, в который натриевые насосы начинают работать снова. И то, что они обнаружили, было способно повергнуть в смирение каждого, кто гордится расстоянием, на которое мы удалились от наделенных щупальцами пучеглазых морских тварей. Механизм работы этих насосов оказался у них точь-в-точь таким же, как у человека.
«Если принять во внимание, — писал Ходжкин, — что кальмар приходится нам дальним родственником — наш последний общий предок скончался… несколько сот миллионов лет назад, — это сходство поведения указывает на то, что в животном царстве натриевый канал имеет для выживания большую ценность». В этих словах присутствует немалая логика, ибо живые организмы — гуманоиды или головоногие, не важно, — лишены выбора по части материалов, с которыми им приходится работать.
Ионы — прекрасное, пусть и подобранное на скорую руку, орудие, позволяющее использовать электричество для передачи сигналов. И то, что работало за 300 миллионов лет до нашей эры, работает и сейчас.
Глава 12
Электрические настроения
Индианаполис, 1972 — и сегодня
В течение сотен миллионов лет электрически мыслящие живые существа нашей планеты ползали, бегали, спали, застывали на месте или находили себе еще какие-то занятия. И в каждом из них электрические сигналы проносились по нервным мембранным каналам, точно по самым замысловатым в мире «американским горкам», вагончики и трассы которых работают круглосуточно.
Однако каждый такой сигнал в конце концов достигает окончания нервного волокна. И тут возникает проблема, поскольку нервы вовсе не образуют гигантскую трубопроводную сеть, не подключаются один к другому. Нет, между двумя смежными нервами всегда существует хорошо исследованный еще в 1897 году зазор, именуемый синапсом (от греческого слова синаптеин, означающего «соединение», «связь»). Это всего несколько тысячных сантиметра, однако на микроскопическом уровне они выглядят океанским простором.
Каким же образом сигнал пересекает его? Ответ на этот вопрос мог стать следующим крупным шагом в изучении наших нервов и мозга. На первый взгляд электроны просто потонули бы в зазоре между нервами и даже от отдельных ионов проку было бы не больше, чем от болтающегося далеко в море мяча, которым играют в пляжный волейбол. Однако ученые понимали, что нечто все-таки дает им возможность пройти синапс. Более того, они подозревали, что это нечто имеет электрическую природу. Но если оно и не маленький электрон, и не большой ион, тогда что?
Ответ пришел от Отто Леви, сорокасемилетнего фармаколога, работавшего в университете Граца. Однажды ночью, накануне Страстной субботы 1921 года, он вдруг проснулся и совершенно отчетливо понял, как сигналы проходят синапсы. Это походило на сказку. Он включил свет, записал свое великое открытие и снова заснул. А утром проснулся. Ученым он всегда считался многообещающим, однако то, что ему приснилось тогда, представляло собой идею, равные которой появляются далеко не каждое столетие. Он взглянул на клочок бумаги, на котором ночью сделал записи.
И ничего не смог прочитать. Вообще-то говоря, почерк Отто Леви был довольно разборчивый — но только не в три часа ночи. Этот день оказался одним из худших в его жизни. Сколько ни вглядывался Леви в написанное, ему не удалось прочитать ни единого из нацарапанных на бумажке слов.
И сколько ни тужился, он так и не смог припомнить даже какого-нибудь обрывка того, что ему приснилось.
На следующую ночь, в субботу, он прилежно улегся спать. Если ему повезет, нужный ответ вернется сам собой. Наступила полночь, он мирно спал — без сновидений. Час ночи — никаких снов, способных его пробудить. А затем, как любил вспоминать Леви, «в три часа ночи идея вернулась. Ею был замысел эксперимента».
На сей раз он не стал доверять ее перу и бумаге. Вместо этого Леви оделся и поспешил в лабораторию. Он придумал способ, позволявший выявить вещество, исходящее из нерва! Он знал, что ему следует сделать, — читателям особо брезгливым этот и следующие несколько абзацев лучше пропустить: ему следует убить двух лягушек и вырезать их сердца. Одно из сердец должно сохранить идущий к нему нерв, который подводит к сердцу это неведомое вещество. Надо посмотреть, как поведет себя сердце — замедлятся его сокращения или ускорятся, — когда он выдавит из нерва побольше этого вещества. А затем он спрыснет этим веществом второе сердце. И если второе прореагирует так же, как первое, Леви будет знать, что нечто присутствующее в этой жидкости содержит правильный ответ на его вопрос.
Проделать все это Леви мог по той простой причине, что у него, как и у многих анатомов того времени, всегда имелся под рукой запас несчастных лягушек, а кроме того, он знал, что, даже если лягушку убить, сердце ее какое-то время еще будет биться. Он взял скальпель, принялся за работу, и вскоре в двух отдельных чашечках уже лежало по продолжавшему трепетать лягушачьему сердцу. Леви сдавил идущий к первому большой блуждающий нерв — чтобы в сердце поступило побольше той жидкости, которую этот нерв к нему подводит. Биения сердца начали замедляться. Тогда Леви перенес некоторое количество той же жидкости во вторую чашечку — второе сердце тоже стало биться медленнее. Жидкость, поступавшая из живого нерва, и вправду была достаточно сильна, чтобы замедлить их биения.
В дальнейшем Леви и его последователи сумели понять следующее: в жидкостях, тонкими струйками которых обмениваются нервные клетки, присутствуют относительно громоздкие молекулы. Нередко они состоят из нескольких сот атомов, и именно благодаря тому, что эти молекулы превосходят размерами легковесные ионы натрия, им и удается проделать путь от одного нерва к другому неповрежденными. Они ведут себя как миниатюрные подводные лодки. Целые флотилии таких субмарин выплывают из крошечных пузырьков, которые украшают окончание выстреливающей сигнал нервной клетки, и пересекают синапс, направляясь к своей цели. Такого рода молекулы существуют в нервных соединениях всего нашего тела, в том числе и в соединениях нервных клеток мозга. А поскольку клетки, посредством которых мы думаем, называются нейронами, молекулы, переносящие между ними сигналы, получили название нейротрансмиттеров (или нейромедиаторов).