От атомов к древу. Введение в современную науку о жизни - читать онлайн книгу. Автор: Сергей Ястребов cтр.№ 51

читать книги онлайн бесплатно
 
 

Онлайн книга - От атомов к древу. Введение в современную науку о жизни | Автор книги - Сергей Ястребов

Cтраница 51
читать онлайн книги бесплатно

Условимся, что если к слову “ген” не сделано никаких оговорок, то речь идет, скорее всего, о гене, который кодирует один белок, состоящий из одной аминокислотной цепочки, то есть из одного полипептида (см. главу 3). О рядовом гене, так сказать. В этом случае определение “один ген — один белок” будет верным.

Число генов у каждого отдельного живого существа обычно измеряется тысячами или первыми десятками тысяч. Например, у многоклеточных животных генов чаще всего 15 000–20 000. У бактерий — всего несколько тысяч или, в редких случаях, даже несколько сотен (правда, обладатели таких маленьких геномов могут жить только внутри чужих клеток, от которых и получают большую часть нужных веществ — своих ферментов им для этого, как правило, не хватает). А у некоторых цветковых растений число генов переваливает за 40 000, и вот это, видимо, уже близко к естественному пределу. Во всяком случае, сотен тысяч и миллионов генов ни у какого земного живого организма нет.

Всевозможные процессы “включения” и “выключения” генов, ослабления и усиления их активности и тому подобного в сумме называются регуляцией экспрессии. Надо сказать, что способы регуляции экспрессии невероятно многообразны. Прежде всего, экспрессию гена можно регулировать как на уровне транскрипции (запуск или прекращение синтеза РНК), так и на уровне трансляции (ускорение или задержка синтеза белка на готовой иРНК). Регуляция на уровне транскрипции — более базовая, на уровне трансляции — более тонкая, и ее мы пока не будем касаться.

Но и транскрипцию можно регулировать по-разному. Давайте рассмотрим рядовой ген, то есть отрезок ДНК, несущий полную информацию о некотором белке (см. рис. 9.7А). Он состоит из кодирующей части, где записана последовательность аминокислот, и нескольких некодирующих участков, нужных только для регуляции работы самого гена. Главный из этих некодирующих участков называется промотором. Промотор — это та самая последовательность, которую обязательно должна распознать РНК-полимераза, чтобы транскрипция гена вообще произошла. А вот перед промотором находятся дополнительные регуляторные участки, которые нужны для связывания белков, влияющих на активность гена. Главный из таких белков: конечно, РНК-полимераза, которая, собственно говоря, транскрипцию и осуществляет. И ей в этом помогают еще несколько белков — так называемые общие факторы транскрипции, необходимые для самого процесса синтеза РНК. Но, кроме того, есть еще и регуляторные факторы транскрипции, которые в синтезе РНК непосредственно не участвуют. Их работа — связываться с ДНК, или облегчая, или затрудняя посадку РНК-полимеразы на соответствующий ген (см. рис. 9.7Б). ДНК-связывающий белок, усиливающий таким образом транскрипцию, называется активатором, а ДНК-связывающий белок, блокирующий транскрипцию, — репрессором. Белок-репрессор просто не дает РНК-полимеразе сесть в нужную точку ДНК, а белок-активатор, наоборот, меняет конформацию ДНК так, чтобы РНК-полимеразе было удобнее с ней связаться. Несколько упрощая, можно сказать, что белок-активатор включает ген, а белок-репрессор выключает его.

Самое тут интересное, что регуляторные белки (и активаторы, и репрессоры, и любые другие), разумеется, тоже являются продуктами каких-то генов. И эти гены тоже должны быть кем-то или запущены, или заторможены. Гены, кодирующие регуляторные белки, очень легко взаимодействуют через свои продукты, включая и выключая друг друга и образуя в результате целые цепочки и сети. Неудивительно, что генные сети (gene regulatory networks, сокращенно GRN) стали популярнейшим объектом изучения современной биологии.

Еще один способ регуляции экспрессии — прямая химическая модификация ДНК. Самый частый вид такой модификации — метилирование цитозина (см. рис. 9.7В). В этом случае на определенном отрезке ДНК каждый цитозин получает дополнительную метильную группу и превращается в 5-метилцитозин. Такие участки ДНК транскрибируются слабее, “замолкают”. Метилирование ДНК обратимо и может быть снято соответствующими ферментами, если выключенные этим способом гены потребуется опять включить.

От атомов к древу. Введение в современную науку о жизни

Репликация

Теперь нам осталось поговорить еще про репликацию, то есть копирование ДНК. Как-никак самовоспроизводство — одно из самых главных свойств живых организмов, а без репликации оно совершенно невозможно.

Репликация ДНК — полуконсервативная (см. рис. 9.8А). Двойная спираль расшивается с разрывом водородных связей, после чего к каждой нити ДНК достраивается комплементарная нить из находящихся в растворе нуклеозидтрифосфатов (превращающихся попутно в нуклеозидмонофосфаты). И в результате получается две двойные спирали, в каждой из которых одна цепь “старая”, а другая — “новая”.

От атомов к древу. Введение в современную науку о жизни

Фермент, который синтезирует из мономеров новую цепь ДНК, комплементарную к имеющейся, называется ДНК-полимеразой. На самом деле в любой клетке есть несколько ДНК-полимераз, отличающихся по функциям. Заодно тут сразу возникает несколько проблем, которые с одним классом ферментов в любом случае не решить (см. рис. 9.8Б).

Во-первых, чтобы репликация стала возможна, комплементарные цепи ДНК надо как-то разделить. Для этого фермент хеликаза разрывает водородные связи между азотистыми основаниями, а фермент топоизомераза раскручивает двойную спираль ДНК, разрывая для этого ковалентные связи между нуклеотидами и тут же сшивая их заново. Последнее неизбежно, потому что двойную спираль невозможно раскрутить, не разрывая, если нам недоступны ее концы. Для простоты можно представить себе вместо нее обыкновенный узел, концы шнурков от которого уходят куда-то в бесконечность, а нам тем не менее надо разделить шнурки, чтобы они шли параллельно и не перепутывались. Не будет другого выхода, кроме как разрезать их и потом сшить. Вот это топоизомераза и делает.

Во-вторых, ДНК-полимераза не может начать создавать новую цепь с нуля. Ей нужна затравка в виде короткой комплементарной РНК, которую синтезирует фермент праймаза. Новая ДНК может синтезироваться в виде целой серии фрагментов, ковалентно связанных с РНК-затравками (фрагменты Оказаки). Потом особые ферменты вырезают РНК, помещают на ее место комплементарные исходной цепи дезоксирибонуклеотиды, и ДНК-лигаза сшивает все это в единую цепь ДНК.

В-третьих, цепи ДНК антипараллельны. А любая ДНК-полимераза может двигаться по исходной цепи от 3'-конца к 5'-концу, но никак не наоборот. Это означает, что новая цепь ДНК синтезируется начиная с 5'-конца, так же как и РНК при транскрипции. ДНК-полимеразы, способной ползти по цепи в обратную сторону, в природе не существует. Поэтому две цепи ДНК вынужденно реплицируются по-разному. Цепь, по которой ДНК-полимераза может непрерывно ползти от 3'-конца к 5'-концу, называется лидирующей. Тут механизм репликации упрощен: ДНК-полимераза начинает с единственной РНКовой затравки и дальше может сколько угодно наращивать новую цепь вдоль исходной по мере того, как та раскрывается. Цепь, вдоль которой ДНК-полимераза непрерывно ползти не может, называется отстающей. ДНК-полимераза проходит ее отрезок за отрезком, как бы перемещаясь скачками и каждый раз начиная с новой затравки. Тут как раз и образуются фрагменты Оказаки, а потом лигаза сшивает их вместе.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию