1
Broda E. The evolution of the bioenergetic processes. Pergamon Press, 1975. Перевод на русский: Брода Э. Эволюция биоэнергетических процессов. — М.: Мир, 1978.
2
Циркин Ю.Б. Мифы Угарита и Финикии. — М.: АСТ, 2003.
3
Dobzhansky T. Nothing in biology makes sense except in the light of evolution // The American Biology Teacher, 1973, V. 14, № 3, 125–129. Русский перевод этой статьи можно прочитать в сети по адресу: http://heathland.ru/111/LJ/Dobzhansky_rus.pdf
4
Фейнмановские лекции по физике. — М.: Мир, 1965.
5
Вклад легких частиц вроде фотонов и нейтрино здесь не учтен, но в современной Вселенной он в любом случае невелик (десятые доли процента).
6
Brock W. H. The life and work of William Prout // Medical history, 1965, V. 9, №2, 101–126.
7
Caffau E. et al. An extremely primitive halo star // arXiv preprint arXiv: 1203.2612 (2012).
8
Oddo G. Die molekularstruktur der Radioaktiven atome // Zeitschrift fur anorganische und allgemeine Chemie, 1914, V. 87, №1, 253–268. Harkins W. D. The evolution of the elements and the stability of complex atoms. I. A new periodic system which shows a relation between the abundance of the elements and the structure of the nuclei of atoms // Journal of the American Chemical Society, 1917, V. 39, №5, 856–879.
9
Binnemans K. et al. Rare-earth economics: the balance problem // JOM, 2013, V. 65, №7, 846–848.
10
Burbidge E. M. et al. Synthesis of the elements in stars // Reviews of Modern Physics, 1957, V. 29, №4, 547–650.
11
Dobzhansky T. Teilhard de Chardin and the orientation of evolution // Zygon, 1968, V. 3, №3, 242–258. Перевод этого фрагмента несколько сокращен (без потери для смысла).
12
Красилов В.А. Нерешенные проблемы теории эволюции. — Владивосток: Дальневосточный научный центр АН СССР, 1986.
13
Bracher P. J. Origin of life: Primordial soup that cooks itself // Nature Chemistry, 2015, V. 7, №4, 273–274.
14
Пер. А. Попова.
15
Vanderbilt B. Kekule’s whirling snake: Fact or fiction // Journal of Chemical Education, 1975, V. 52, №11, 709.
16
Irwin L. N., Schulze-Makuch D. Petrolakes // Cosmic Biology, 2011, 225–251.
17
Bracher, 2015.
18
Страйер Л. Биохимия. — М.: Мир, 1984–1985 (2 тома).
19
Менделеев Д.И. Рассуждение о соединении спирта с водою, представленное в физико-математический факультет Императорского Санкт-Петербургского университета для получения степени доктора химии (1865).
20
Друг с другом они взаимодействуют за счет так называемых ван-дер-ваальсовых сил — электростатического притяжения нейтральных молекул, возникающего между мгновенными микрозарядами, которые неизбежно образуются из-за случайного характера движения электронов внутри этих молекул. Благодаря ван-дер-ваальсовым силам даже совершенно неполярные молекулы могут притягиваться друг к другу, хотя и слабо.
21
Inagaki F. et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system // Proceedings of the National Academy of Sciences, 2006. V. 103, №38, 14164–14169.
22
Budisa N., Schulze-Makuch D. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment // Life, 2014, V. 4, №3, 331–340.
23
Whittet D. C. B. et al. Observational constraints on methanol production in interstellar and preplanetary ices // The Astrophysical Journal, 2011, V. 742, №1, 1–10.
24
Schulze-Makuch D. Io: Is life possible between fire and ice // Journal of Cosmology, 2010, V. 5, 912–919.
25
Азимов А. Асимметрия жизни. От секрета научных прозрений до проблемы перенаселения. — М.: Центрполиграф, 2008.
26
Vickery H. B. The origin of the word protein // The Yale Journal of Biology and Medicine, 1950, V. 22, №5, 387–393.
27
Кольцов Н.К. Физико-химические основы морфологии // Труды Третьего Всероссийского съезда зоологов, анатомов и гистологов в Ленинграде 14–20 декабря 1927 г. — Издание Главного управления научных учреждений, 1928.
28
Williams A. N., Woessner K. M. Monosodium glutamate ‘allergy’: menace or myth? // Clinical & Experimental Allergy, 2009, V. 39, № 5, 640–646.
29
Пармон В.Н. Новое в теории появления жизни // Химия и жизнь. 2005. №5.
30
Cronin J. R., Pizzarello S. Amino acids in meteorites // Advances in Space Research, 1983, V. 3, №9, 5–18.
31
Пер. В. Кулагиной-Ярцевой, И. Левшина.
32
Блюменфельд Л.А. Проблемы биологической физики. — М.: Наука, 1974.
33
Хургин Ю.И., Чернавский Д.С., Шноль С.Э. Молекула белка-фермента как механическая система // Колебательные процессы в биологических системах. — М.: Наука, 1967.
34
Пер. В.В. Вересаева.
35
Povolotskaya I. S., Kondrashov F. A. Sequence space and the ongoing expansion of the protein universe // Nature, 2010, V. 465, 922–926.
36
Bruckner H. et al. Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations // Amino Acids, 1992, V. 2, №3, 271–284.
37
Elsila J. E. et al. Meteoritic amino acids: diversity in compositions reflects parent body histories // ACS Central Science, 2016, V. 2, №6, 370–379.
38
Пер. К. Душенко.
39
Крысова А.В., Циркин В.И., Куншин А.А. Роль аквапоринов в транспорте воды через биологические мембраны // Вятский медицинский вестник. 2012. №2.
40
Шноль С.Э. Физико-химические факторы биологической эволюции. — М.: Наука, 1979.
41
Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings of the National Academy of Sciences, 1990, V. 87, №12, 4576–4579.
42
Lombard J., Lopez-Garcia P., Moreira D. The early evolution of lipid membranes and the three domains of life // Nature Reviews. Microbiology, 2012, V. 10, №7, 507–515.
43
Koga Y. et al. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent // Journal of Molecular Evolution, 1998, V. 46, №1, 54–63.
44
Martin W., Russell M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2003, V. 358, №1429, 59–85.
45
Cordova A. et al. Amino acid catalyzed neogenesis of carbohydrates: A plausible ancient transformation // Chemistry: A European Journal, 2005, V. 11, №16, 4772–4784.
46
Watanabe H. et al. A cellulase gene of termite origin // Nature, 1998, 330–331.
47
Tanimura A. et al. Animal cellulases with a focus on aquatic invertebrates // Fisheries Science, 2013, V. 79, №1, 1–13.
48
Robinson J. M. Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance // Geology, 1990, V. 18, №7, 607–610.
49
Beerling D. J. et al. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere // Geochimica et Cosmochimica Acta, 2002, V. 66, №21, 3757–3767.
50
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V. 361, №1470, 969–1006.
51
Callahan M. P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases // Proceedings of the National Academy of Sciences, 2011, V. 108, №34, 13995–13998.
52
Mulkidjanian A. Y., Cherepanov D. A., Galperin M. Y. Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light // BMC Evolutionary Biology, 2003, V. 3, №1, 12–18.
53
Dahm R. Friedrich Miescher and the discovery of DNA // Developmental Biology, 2005, V. 278, №2, 274–288.
54
Troland L. T. Biological enigmas and the theory of enzyme action // The American Naturalist, 1917, V. 51, №606, 321–350.
55
Demerec M. What is a gene? // Journal of Heredity, 1933, V. 24, №10, 369–378.
56
Avery O. T., MacLeod C. M., McCarty M. Studies on the chemical nature of the substance inducing transformation of Pneumococcal types // Journal of Experimental Medicine, 1944, V. 79, №2, 137–158.
57
Watson J. D., Crick F. H. Molecular structure of nucleic acids // Nature, 1953, V. 171, 737–738.
58
Jeffries A. C., Symons R. H. A catalytic 13-mer ribozyme // Nucleic Acids Research, 1989, V. 17, №4, 1371–1377.
59
Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain // Proceedings of the National Academy of Sciences of the United States of America, 2006, V. 103, №10, 3669–3674.
60
Коляскина Е.А. Дающая жизнь: традиционные представления русских крестьян Алтая о женском плодородии и деторождении // Вестник Томского государственного университета. 2008. №317.
61
Маклин Ф. 1759. Год завоевания Британией мирового господства. — М.: АСТ, 2011. Книга посвящена решающим событиям Семилетней войны.
62
Roberts I. F. Maupertuis: Doppelganger of Doctor Moreau // Science Fiction Studies, 2001, V. 28, №2, 261–274.
63
Крик Ф., Ниренберг М. Генетический код // Успехи физических наук. 1964. Т. 82. Вып. 1, 133–160.
64
Gamow G., Ycas M. Statistical correlation of protein and ribonucleic acid composition // Proceedings of the National Academy of Sciences, 1955, V. 41, №12, 1011–1019.
65
Аспиз М.Е. Об А.А. Нейфахе как об ученом // А.А. Нейфах — взгляды, идеи, раздумья. — М.: Наука, 2001, 114–118.
66
Кроме стоп-кодона существует еще и другой “знак препинания” — старт-кодон, с которого синтез полипептидной цепочки начинается. Обычно им является кодон аминокислоты метионина — АУГ. Таким образом, первым “кирпичиком”, с которого начинает синтезироваться почти любой белок, служит метионин. Это, однако, не значит, что все белки обязательно начинаются с метионина, потому что он вполне может удаляться в ходе так называемой посттрансляционной модификации.
67
Здесь воспроизведена идея, которую высказал в сетевом обсуждении китайский биохимик Минь Чжоу: https://www.researchgate.net/ post/Why_did_evolution_favor_ ATP_and_not_GTP_TTP_or_CTP
68
Вот описание этого опыта, которое в данном случае будет лучше любого пересказа своими словами: “В экспериментах с бесклеточной системой Маршалл Ниренберг и Генрих Маттэи, исследовавшие активность различных препаратов РНК в роли матриц для белкового синтеза, в качестве контроля использовали синтетическую полиуридиловую кислоту (poly U), рассчитывая, что она не будет проявлять существенной матричной активности. К своему большому удивлению, они обнаружили, что poly U достаточно эффективно направляет синтез полифенилаланина. Более того, полифенилаланин оказался единственным полипептидом, синтезируемым в присутствии poly U. Из этих наблюдений непосредственно вытекало, что триплет UUU служит кодоном для фенилаланина. Вскоре аналогичным образом было установлено, что poly C направляет синтез полипролина, а poly A — полилизина, то есть CCC является пролиновым кодоном, а AAA кодирует лизин. К счастью, использованная в этих экспериментах бесклеточная система содержала повышенную концентрацию ионов магния, при которой (как выяснилось в дальнейшем) инициация синтеза полипептидной цепи происходит и в отсутствие инициаторного кодона AUG. Только поэтому вышеупомянутые синтетические матрицы и удалось использовать для аномальной инициации трансляции. Так, отчасти благодаря счастливой случайности, удалось сделать первые шаги на пути к полной расшифровке генетического кода”.(Кайгер Д., Айала Ф. Современная генетика. — М.: Мир, 1987. Т. 2. С. 76.)
69
Retallack G. J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V. 235, 71–87.
70
Кунин Е.В. Логика случая. — М.: Центрполиграф, 2014.
71
Hussell T., Bell T. J. Alveolar macrophages: plasticity in a tissue-specific context // Nature Reviews. Immunology, 2014, V. 14, 81–93.
72
Малахов В.В. Основные этапы эволюции эукариотных организмов // Палеонтологический журнал. 2003. №6. 25–32.
73
Раутиан А.С., Сенников А.Г. Отношения хищник — жертва в филогенетическом масштабе времени // Экосистемные перестройки и эволюция биосферы. 2001. Вып. 4, 29–46.
74
Danovaro R. et al. The first metazoa living in permanently anoxic conditions // BMC Biology, 2010, V. 8, №1, 30.
75
Joseph R. The origin of eukaryotes: Archaea, bacteria, viruses and horizontal gene transfer // Journal of Cosmology, 2010, V. 10, 3418–3445.
76
Кунин Е.В. Логика случая — М.: Центрполиграф, 2014.
77
Yutin N. et al. The origins of phagocytosis and eukaryogenesis // Biology Direct, 2009, V. 4, №1, 9.
78
Muller F. et al. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat // Environmental Microbiology, 2010, V. 12, №8, 2371–2383.
79
Pittis A. A., Gabaldon T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry // Nature, 2016, V. 531, 101–104.
80
Baum D., Baum B. An inside-out origin for the eukaryotic cell // BMC Biology, 2014, V. 12, №1, 76.
81
Baum D., Baum B. The world in a cell // New Scientist, 2015, V. 225, №3008, 28–29.
82
Albers S. V., Meyer B. H. The archaeal cell envelope // Nature Reviews. Microbiology, 2011, V. 9, 414–426.
83
Хороший обзор гипотезы Баумов на русском языке: https://postnauka.ru/faq/35994
84
Bell P. J. L. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? // Journal of Molecular Evolution, 2001, V. 53, №3, 251–256.
85
Takemura M. Poxviruses and the origin of the eukaryotic nucleus // Journal of Molecular Evolution, 2001, V. 52, №5, 419–425.
86
Abedin M., King N. Diverse evolutionary paths to cell adhesion // Trends in Cell Biology, 2010, V. 20, №12, 734–742.
87
Szymona M., Ostrowski W. Inorganic polyphosphate glucokinase of Mycobacterium phlei // Biochimica et Biophysica Acta (BBA), Specialized Section on Enzymological Subjects, 1964, V. 85, №2, 283–295.
88
Hug L. A. et al. A new view of the tree of life // Nature Microbiology, 2016, V. 1, 1–6.
89
Кулаев И.С. Неорганические полифосфаты и их роль на разных этапах клеточной эволюции // Соросовский образовательный журнал. 1996. №2.
90
Липман Ф. Современный этап эволюции биосинтеза и предшествовавшее ему развитие // Происхождение предбиологических систем. — М.: Мир, 1966.
91
Yamagata Y. et al. Volcanic production of polyphosphates and its relevance to prebiotic evolution // Nature, 1991, V. 352, 516–519.
92
Скулачев В.П. Эволюция биологических механизмов запасания энергии // Соросовский образовательный журнал. 1997. №5.
93
Энергия может передаваться от одного тела к другому и путем излучения, без непосредственного контакта между частицами, но для процессов, интересующих нас сейчас, это особого значения не имеет.
94
Романовский Ю.М., Тихонов А.Н. Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза — вращающийся молекулярный мотор // Успехи физических наук. 2010. Т. 180, 931–956.
95
Yoshida M. et al. ATP synthase — a marvellous rotary engine of the cell // Nature Reviews. Molecular Cell Biology, 2001, V. 2, 669–677.
96
Langen P., Hucho F. Karl Lohmann and the Discovery of ATP // Angewandte Chemie International Edition, 2008, V. 47, №10, 1824–1827.
97
Skulachev V. P. Sodium bioenergetics // Trends in Biochemical Sciences, 1984, V. 9, №11, 483–485.
98
Mulkidjanian A. Y., Dibrov P., Galperin M. Y. The past and present of sodium energetics: may the sodium-motive force be with you // Biochimica et Biophysica Acta (BBA). Bioenergetics, 2008, V. 1777, №7, 985–992.
99
Mulkidjanian A. Y. et al. Evolutionary primacy of sodium bioenergetics // Biology Direct, 2008a, V. 3, №1, 13–22.
100
Quayle J. R., Ferenci T. Evolutionary aspects of autotrophy // Microbiological Reviews, 1978, V. 42, №2, 251–273.
101
Pereto J. et al. Comparative biochemistry of CO2 fixation and the evolution of autotrophy // International Microbiology, 1999, V. 2, 3–10.
102
Скулачев В.П. Законы биоэнергетики // Соросовский образовательный журнал. 1997. №1.
103
Голубовский М.Д. Век генетики: эволюция идей и понятий. Научно-исторические очерки. — СПб.: Борей Арт, 2000.
104
Тут трудно не вспомнить популярный у биологов весьма реалистичный анекдот: “Инструкция по биохимическому опыту. Пункт первый. Подготовьте крысу к опыту. Пункт второй. Полученную кашицу...”
105
Корнберг А. Биохимия на рубеже веков // Химия и жизнь. 2002. №12.
106
Haldane J. B. S. The origin of life // Rationalist Annual, 1929.
107
Lane N., Allen J. F., Martin W. How did LUCA make a living? Chemiosmosis in the origin of life // BioEssays, 2010, V. 32, №4, 271–280.
108
Siebers B., Schonheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea // Current Opinion in Microbiology, 2005, V. 8, №6, 695–705.
109
Martin W., Russell M. J. On the origin of biochemistry at an alkaline hydrothermal vent // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2007, V. 362, №1486, 1887–1926.
110
Weiss M. C. et al. The physiology and habitat of the last universal common ancestor // Nature Microbiology, 2016, V. 1, 16116–16122.
111
Herschy B. et al. An origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution, 2014, V. 79, №5-6, 213–227.
112
Sojo V., Pomiankowski A., Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria // PLoS Biology, 2014, V. 12, №8, e1001926.
113
Bernhardt H. S., Tate W. P. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? // Biology Direct, 2012, V. 7, №1, 4.
114
Диброва Д.В. и др. Системы Nа+/К+-гомеостаза как предшественники мембранной биоэнергетики // Биохимия. 2015. Т. 80. №5. 590–611.
115
Dibrova D. V. et al. The role of energy in the emergence of biology from chemistry // Origins of Life and Evolution of Biospheres, 2012, V. 42, №5, 459–468.
116
Djokic T. et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits // Nature Communications, 2017, V. 8, 15263.
117
Благодарю Михаила Никитина за то, что обратил на это мое внимание.
118
Keeling P. J. et al. The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism // Genome Biology and Evolution, 2010, V. 2, 304–309.
119
Felix M. A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses // PLoS Biology, 2011, V. 9, №1, e1000586.
120
Suttle C. A. Viruses in the sea // Nature, 2005, V. 437, 356–361.
121
Weitz J. S., Wilhelm S. W. An ocean of viruses // Scientist, July 2013.
122
Baltimore D. Expression of animal virus genomes // Bacteriological Reviews, 1971, V. 35, №3, 235–241.
123
Агол В.И. Разнообразие вирусов // Соросовский образовательный журнал. 1997. №4.
124
Кунин Е.В. Логика случая. — М.: Центрполиграф, 2014.
125
На эту тему есть экспериментальные данные, показывающие, что запустить трансляцию прямо с ДНК в принципе можно, хотя далеко этот процесс не заходит и для синтеза полноценных белков он непригоден. Damian L. et al. Single-strand DNA translation initiation step analyzed by Isothermal Titration Calorimetry // Biochemical and Biophysical Research Communications, 2009, V. 385, №3, 296–301.
126
Moreira D., Lopez-Garcia P. Ten reasons to exclude viruses from the tree of life // Nature Reviews Microbiology, 2009, V. 7, 306–311.
127
Hegde N. R. et al. Reasons to include viruses in the tree of life // Nature Reviews Microbiology, 2009, V. 7, 615.
128
Forterre P. Defining life: the virus viewpoint // Origins of Life and Evolution of Biospheres, 2010, V. 40, Issue 2, 151–160.
129
Bandea C. I. A new theory on the origin and the nature of viruses // Journal of Theoretical Biology, 1983, V. 105, №4, 591–602.
130
La Scola B. et al. A giant virus in amoebae // Science, 2003, V. 299, №5615, 2033–2033.
131
Miller S., Krijnse-Locker J. Modification of intracellular membrane structures for virus replication // Nature Reviews Microbiology, 2008, V. 6, 363–374.
132
Novoa R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis // Biology of the Cell, 2005, V. 97, №2, 147–172.
133
Suzan-Monti M. et al. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus // PLoS One, 2007, V. 2, №3, e328.
134
Claverie J. M. Viruses take center stage in cellular evolution // Genome Biology, 2006, V. 7, №6, 110.
135
Thompson L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism // Proceedings of the National Academy of Sciences, 2011, V. 108, №39, E757–E764.
136
Forterre, 2010.
137
Bamford D. H. Do viruses form lineages across different domains of life? // Research in Microbiology, 2003, V. 154, №4, 231–236.
138
Raoult D., Forterre P. Redefining viruses: lessons from Mimivirus // Nature Reviews Microbiology, 2008, V. 6, 315–319.
139
Koonin E. V., Senkevich T. G., Dolja V. V. The ancient Virus World and evolution of cells // Biology Direct, 2006. V. 1, №1, 29.
140
Lwoff A. Interaction among virus, cell, and organism. Nobel Lecture, December 11, 1963.
141
Benner S. A. Defining life // Astrobiology, 2010, V. 10, №, 10, 1021–1030.
142
Раутиан А.С. О природе генотипа и наследственности // Журнал общей биологии. 1993. Т. 54. №2, 131–148.
143
Редактируя эту главу, А.В. Марков заметил, что — в противовес этому рассуждению — в молодой Вселенной довольно долго все элементы тяжелее лития существовали именно в мире “платоновских идей”. И все их химические соединения тоже, и все свойства. И пространство белковых последовательностей, о котором идет речь в главе 3, — это тоже в основном мир платоновских идей. Какого-то белка нет в природе, но он возможен, и его свойства предопределены.
144
Stanley W. M. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus // Science, 1935, V. 81, №2113, 644–645.
145
Lwoff A. The concept of virus // Microbiology, 1957, V. 17, №2, 239–253.
146
La Scola et al., 2003.
147
Arslan D. et al. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae // Proceedings of the National Academy of Sciences, 2011, V. 108, №42, 17486–17491.
148
Abergel C., Legendre M., Claverie J. M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus // FEMS Microbiology Reviews, 2015, V. 39, №6, 779–796.
149
Schulz F. et al. Giant viruses with an expanded complement of translation system components // Science, 2017, V. 356, №6333, 82–85.
150
Colson P. et al. Viruses with more than 1,000 genes: Mamavirus, a new Acanthamoeba polyphagamimivirus strain, and reannotation of Mimivirus genes // Genome Biology and Evolution, 2011, V. 3, 737–742.
151
Legendre M. et al. Genomics of Megavirus and the elusive fourth domain of life // Communicative & Integrative Biology, 2012, V. 5, №1, 102–106.
152
Philippe N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes // Science, 2013, V. 341, №6143, 281–286.
153
Corradi N. et al. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis // Nature Communications, 2010, V. 1, 77–83.
154
Schulz et al., 2017.
155
Raoult, Forterre, 2008.
156
Forterre P. The origin of DNA genomes and DNA replication proteins // Current Opinion in Microbiology, 2002, V. 5, №5, 525–532.
157
Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells // Biochimie, 2005, V. 87, №9–10, 793–803.
158
Forterre P., Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties // Annals of the New York Academy of Sciences, 2009, V. 1178, №1, 65–77.
159
Shuman S. What messenger RNA capping tells us about eukaryotic evolution // Nature Reviews. Molecular Cell Biology, 2002, V. 3, 619–625.
160
Это связано с тем, что РНК-содержащему вирусу не нужно проникать в ядро, чтобы размножиться. Ему достаточно проникнуть в цитоплазму. Fay N., Pante N. Nuclear entry of DNA viruses // Frontiers in Microbiology, 2015, V. 6, 467.
161
Forterre P. The origin of viruses and their possible roles in major evolutionary transitions // Virus Research, 2006, V. 117, №1, 5–16.
162
Takeuchi N., Hogeweg P. Evolution of complexity in RNA-like replicator systems // Biology Direct, 2008, V. 3, №1, 11.
163
La Scola B. et al. The virophage as a unique parasite of the giant mimivirus // Nature, 2008, V. 455, 100–104.
164
Suttle C. A. Marine viruses — major players in the global ecosystem // Nature Reviews. Microbiology, 2007, V. 5, 801–812.
165
Eugene V. Koonin E. V., Dolja V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements // Microbiology and Molecular Biology Reviews, 2014, V. 78, №2, 278–303.
166
Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life // Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, V. 59, 100–108.
167
Перевод мой.
168
Беляков С.С. Гностик из Уржума // Урал. 2003. №5.
169
Salt G. Experimental studies in insect parasitism. XIII. The haemocytic reaction of a caterpillar to eggs of its habitual parasite // Proceedings of the Royal Society of London, B: Biological Sciences, 1965, V. 162, №988, 303–318.
170
Stoltz D. B., Vinson S. B. Penetration into caterpillar cells of virus-like particles injected during oviposition by parasitoid ichneumonid wasps // Canadian Journal of Microbiology, 1979, V. 25, №2, 207–216.
171
Edson K. M. et al. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host // Science, 1981, V. 211, №4482, 582–583.
172
Stoltz D. B. et al. Polydnaviridae — a proposed family of insect viruses with segmented, double-stranded, circular DNA genomes // Intervirology, 1984, V. 21, №1, 1–4.
173
Fleming J. G., Summers M. D. Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host // Proceedings of the National Academy of Sciences, 1991, V. 88, №21, 9770–9774.
174
Gundersen-Rindal D. et al. Parasitoid polydnaviruses: evolution, pathology and applications: Dedicated to the memory of Nancy E. Beckage // Biocontrol Science and Technology, 2013, V. 23, №1, 1–61.
175
Hayakawa Y. Growth-blocking peptide: an insect biogenic peptide that prevents the onset of metamorphosis //Journal of Insect Physiology, 1995, V. 41, №1, 1–6.
176
Beckage N. E. Parasitoids and polydnaviruses // Bioscience, 1998, V. 48, №4, 305–311
177
Stoltz D. B. The polydnavirus life cycle // Parasites and pathogens of insects, 1993, V. 1, 167–187.
178
Webb B. A. Polydnavirus biology, genome structure, and evolution // The insect viruses. Springer US, 1998, 105–139.
179
Federici B. A., Bigot Y. Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps // Journal of Insect Physiology, 2003, V. 49, №5, 419–432.
180
Webb B., Fisher T., Nusawardani T. The natural genetic engineering of polydnaviruses // Annals of the New York Academy of Sciences, 2009, V. 1178, №1, 146–156.
181
Beckage N. E. Games parasites play: the dynamic roles of proteins and peptides in the relationship between parasite and host // Parasites and Pathogens of Insects: Parasites. Academic Press, 1993, 25–57.
182
Whitfield J. B., Asgari S. Virus or not? Phylogenetics of polydnaviruses and their wasp carriers // Journal of Insect Physiology, 2003, V. 49, №5, 397–405.
183
Whitfield J. B. Molecular and morphological data suggest a single origin of the polydnaviruses among braconid wasps // Naturwissenschaften, 1997, V. 84, №11, 502–507.
184
Bezier A. et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus // Science, 2009, V. 323, №5916, 926–930.
185
Volkoff A. N. et al. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome // PLoS Pathogens, 2010, V. 6, №5, e1000923.
186
Strand M. R., Burke G. R. Polydnaviruses: nature’s genetic engineers // Annual Review of Virology, 2014, V. 1, 333–354.
187
Strand M. R., Burke G. R. Polydnaviruses: from discovery to current insights // Virology, 2015, V. 479, 393–402.
188
Villarreal L. P. Can viruses make us human? // Proceedings of the American Philosophical Society, 2004, V. 148, №3, 296–323.
189
Roossinck M. J. The good viruses: viral mutualistic symbioses // Nature Reviews. Microbiology, 2011, V. 9, №2, 99–108.
190
Thurber R. V. et al. Virus-host interactions and their roles in coral reef health and disease // Nature Reviews Microbiology, 2017, V. 15, №4, 205–216.
191
Oldstone M. B. A. Prevention of type I diabetes in nonobese diabetic mice by virus infection // Science, 1988, V. 239, №4839, 500–503.
192
Stoye J. P. Studies of endogenous retroviruses reveal a continuing evolutionary saga // Nature reviews. Microbiology, 2012, V. 10, №6, 395–406.
193
Villarreal L. P. et al. Virus-host symbiosis mediated by persistence // Symbiosis (Rehovot), 2007, V. 44, №1/3, 1–9.
194
Gregory T. R. Synergy between sequence and size in large-scale genomics // Nature Reviews. Genetics, 2005, V. 6, 699–708.
195
Stoye, 2012.
196
Li W. et al. Human endogenous retrovirus-K contributes to motor neuron disease // Science Translational Medicine, 2015, V. 7, №307, 307ra153-307ra153.
197
Lager S., Powell T. L. Regulation of nutrient transport across the placenta // Journal of Pregnancy, 2012, V. 2012.
198
Mess A., Carter A. M. Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria // Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 2006, V. 306, №2, 140–163.
199
Dupressoir A., Lavialle C., Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation // Placenta, 2012, Volume 33, Issue 9, 663–671.
200
Magiorkinis G., Blanco-Melo D., Belshaw R. The decline of human endogenous retroviruses: extinction and survival // Retrovirology, 2015, V. 12, №1, 8.
201
Manghera M., Ferguson J., Douville R. Endogenous retrovirus-K and nervous system diseases // Current Neurology and Neuroscience Reports, 2014, V. 14, №10, 488.
202
Fisher R. A. The genetical theory of natural selection. Oxford University, 1930.
203
Bouvier A., Wadhwa M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion // Nature Geoscience, 2010, V. 3, 637–641.
204
Larson R. E., Bromm V. The first stars in the Universe // Scientific American, 2004, V. 14, №4, 4–11.
205
Glover S. The first stars // The First Galaxies. Springer Berlin Heidelberg, 2013, 103–174.
206
Cameron A. G. W., Truran J. W. The supernova trigger for formation of the solar system // Icarus, 1977, V. 30, №3, 447–461.
207
Hester J. J. et al. The cradle of the solar system // Science, 2004, V. 304, №5674, 1116–1117.
208
Tachibana S. et al. 60Fe in chondrites: Debris from a nearby supernova in the early Solar System? // The Astrophysical Journal Letters, 2006, V. 639, №2, L87–L90.
209
Leger A. et al. A new family of planets? “Ocean-Planets” // Icarus, 2004, V. 169, №2, 499–504.
210
Elkins-Tanton L. T. Uranus, Neptune, Pluto, and the Outer Solar System. Chelsea House Publishers, 2006.
211
Сорохтин О.Г., Ушаков С.А. Развитие Земли. — М.: Издательство МГУ, 2002.
212
Robert F. The origin of water on Earth // Science, 2001, V. 293, №5532, 1056–1058.
213
Robert F. The origin of water on Earth // Science, 2001, V. 293, №5532, 1056–1058.
214
Halliday A. N. The Origin of the Moon // Science, 2012, V. 338, №6110, 1040–1041.
215
Hartmann W. K. The giant impact hypothesis: past, present (and future?) // Philosophical Transactions of Royal Society, A: Mathematical, Physical and Engineering Sciences, 2014, V. 372, №2024, 2013.0249.
216
Di Achille G., Hynek B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys // Nature Geoscience, 2010, V. 3, 459–463.
217
Huber C., Wachtershauser G. α-Hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions // Science, 2006, V. 314, №5799, 630–632.
218
Martin W., Russell M. J. On the origin of biochemistry at an alkaline hydrothermal vent // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2007, V. 362, №1486, 1887–1926
219
Russell M. J. The alkaline solution to the emergence of life: energy, entropy and early evolution // Acta Biotheoretica, 2007, V. 55, №2, 133–179.
220
Mulkidjanian A. Y. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth // Biology Direct, 2009, V. 4, №1, 26.
221
Mulkidjanian A. Y., Galperin M. Y. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth // Biology Direct, 2009, V. 4, №1, 27.
222
Wachtershauser G. On the chemistry and evolution of the pioneer organism // Chemistry & Biodiversity, 2007, V. 4, №4, 584–602.
223
Руденко А.П. Теория развития открытых каталитических систем. — М.: Издательство МГУ, 1969.
224
Huber C., Eisenreich W., Wachtershäuser G. Synthesis of α-amino and α-hydroxy acids under volcanic conditions: implications for the origin of life // Tetrahedron Letters, 2010, V. 51, №7, 1069–1071.
225
Wachtershauser G. Origin of life: RNA world versus autocatalytic anabolist // The Prokaryotes. Springer Berlin Heidelberg, 2013. 81–88.
226
О том, как возник аппарат трансляции, подробно рассказано в книге: Никитин М. Происхождение жизни. От туманности до клетки. — М.: Альпина нон-фикшн, 2018.
227
Leipe D. D., Aravind L., Koonin E. V. Did DNA replication evolve twice independently? // Nucleic Acids Research, 1999, V. 27, №17, 3389–3401.
228
Takeuchi N., Hogeweg P. Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life // Physics of Life Reviews, 2012, V. 9, №3, 219–263.
229
Гусев М.В., Минеева Л.А. Микробиология. — М.: Издательство МГУ, 1992.
230
Заренков Н.А. Лекции по теории систематики. — М.: Издательство МГУ, 1996.
231
Лункевич В.В. От Гераклита до Дарвина. — М.: Издательство Министерства просвещения РСФСР, 1960. Т. 1.
232
Willdenow K. L. The principles of botany, and of vegetable physiology. Edinburgh, University Press, 1805.
233
Ellis J. On the Nature and Formation of Sponges: In a Letter from John Ellis, Esquire, FRS to Dr. Solander, FRS // Philosophical Transactions, 1765, V. 55, 280–289.
234
Ragan M. A. A third kingdom of eukaryotic life: History of an idea // Archiv fur Protistenkunde, 1997, V. 148, №3, 225–243.
235
Sapp J. Genesis: the evolution of biology. Oxford University Press (USA), 2003.
236
Hogg J. On the distinctions of a plant and an animal, and on a fourth kingdom of nature // The Edinburgh New Philosophical Journal, 1860, V. 12.
237
Sapp J. The new foundations of evolution: on the tree of life. Oxford University Press (USA), 2009.
238
Copeland H. F. The kingdoms of organisms // The Quarterly Review of Biology, 1938, V. 13, №4, 383–420.
239
Katscher F. The history of the terms prokaryotes and eukaryotes // Protist, 2004, V. 155, №2, 257–263.
240
Whittaker R. H. New concepts of kingdoms of organisms // Science, 1969, V. 163, №3863, 150–160.
241
Hennig W. Phylogenetic systematics // Annual Review of Entomology, 1965, V. 10, №1, 97–116.
242
Клюге Н.Ю. Современная систематика насекомых. Принципы систематики живых организмов и общая система насекомых с классификацией первичнобескрылых и древнекрылых. — СПб.: Лань, 2000.
243
Leedale G. F. How many are the kingdoms of organisms? // Taxon, 1974, V. 23, №2/3, 261–270.
244
Watanabe Y. et al. Introns in protein‐coding genes in Archaea // FEBS Letters, 2002, V. 510, №1/2, 27–30.
245
Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings of the National Academy of Sciences, 1990, V. 87, №12, 4576–4579.
246
Stanier R. Y., Van Niel C. B. The concept of a bacterium // Archiv fur Mikrobiologie, 1962, V. 42, №1, 17–35.
247
Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms // Proceedings of the National Academy of Sciences, 1977, V. 74, №11, 5088–5090.
248
Williams T. A. et al. An archaeal origin of eukaryotes supports only two primary domains of life // Nature, 2013, V. 504, 231–236.
249
Hug L. A. et al. A new view of the tree of life // Nature Microbiology, 2016, V. 1, 16048.
250
Gribaldo S. et al. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? // Nature Reviews. Microbiology, 2010, V. 8, №10, 743–752.
251
Embley T. M., Williams T. A. Steps on the road to eukaryotes // Nature, 2015, V. 521, 169–170.
252
Zaremba-Niedzwiedzka K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity // Nature, 2017, V. 541, 353–358.
253
Единственный эукариот, у которого не удалось обнаружить не только остатков митохондрий, но и никаких митохондриальных белков, — бесцветный жгутиконосец Monocercomonoides, относящийся к супергруппе Excavata. Но из положения этого жгутиконосца на филогенетическом древе однозначно следует, что и у его предков митохондрии когда-то были. Karnkowska A. et al. A eukaryote without a mitochondrial organelle // Current Biology, 2016, V. 26, №10, 1274–1284.
254
Fuerst J. A. Intracellular compartmentation in planctomycetes // Annual Review of Microbiology, 2005, V. 59, 299–328.
255
Fuerst J. A. Beyond prokaryotes and eukaryotes: planctomycetes and cell organization // Nature Education, 2010, V. 3, №9, 44.
256
McInerney J. O. et al. Planctomycetes and eukaryotes: a case of analogy not homology // Bioessays, 2011, V. 33, №11, 810–817.
257
Yutin N. et al. The origins of phagocytosis and eukaryogenesis // Biology Direct, 2009, V. 4, №1, 9.
258
Baum D. A., Baum B. An inside-out origin for the eukaryotic cell // BMC Biology, 2014, V. 12, №1, 76.
259
Sogin M. L. Early evolution and the origin of eukaryotes // Current Opinion in Genetics & Development, 1991, V. 1, №4, 457–463.
260
Gupta R. S. et al. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum // Proceedings of the National Academy of Sciences, 1994, V. 91, №8, 2895–2899.
261
Lake J. A., Rivera M. C. Was the nucleus the first endosymbiont? // Proceedings of the National Academy of Sciences, 1994, V. 91, №8, 2880–2881.
262
Moreira D., Lopez-Garcia P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis // Journal of Molecular Evolution, 1998, V. 47, №5, 517–530.
263
Lopez-Garcia P., Moreira D. Metabolic symbiosis at the origin of eukaryotes // Trends in Biochemical Sciences, 1999, V. 24, №3, 88–93.
264
Lake J. A. Eukaryotic origins // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2015, V. 370, №1678, 20140321.
265
Lopez-Garcia P., Moreira D. Open questions on the origin of eukaryotes // Trends in Ecology & Evolution, 2015, V. 30, №11, 697–708.
266
Gupta R. S., Golding G. B. The origin of the eukaryotic cell // Trends in Biochemical Sciences, 1996, V. 21, №5, 166–171.
267
Lopez-Garcia, Moreira, 2015.
268
Там же.
269
Марков А.В., Куликов A.M. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы // Происхождение и эволюция биосферы. — Новосибирск: ИК РАН, 2005.
270
Takishita K., Inagaki Y. Eukaryotic origin of glyceraldehyde-3-phosphate dehydrogenase genes in Clostridium thermocellum and Clostridium cellulolyticum genomes and putative fates of the exogenous gene in the subsequent genome evolution // Gene, 2009, V. 441, №1, 22–27.
271
Nelson-Sathi S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria // Nature, 2015, V. 517, 77–80.
272
Shimada H., Yamagishi A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids // Biochemistry, 2011, V. 50, №19, 4114–4120.
273
Hartman H., Fedorov A. The origin of the eukaryotic cell: a genomic investigation // Proceedings of the National Academy of Sciences, 2002, V. 99, №3, 1420–1425.
274
Taylor F. J. R. Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes // BioSystems, 1978, V. 10, №1/2, 67–89.
275
Schulze F. E. XXXII.—On the relationship of the sponges to the Choanoflagellata // Journal of Natural History, 1885, V. 15, №89, 365–377.
276
Cavalier-Smith T. Eukaryote kingdoms: seven or nine? // BioSystems, 1981, V. 14, №3/4, 461–481
277
Cavalier-Smith T. The origin of eukaryote and archaebacterial cells // Annals of the New York Academy of Sciences, 1987, V. 503, №1, 17–54.
278
Baroin A. et al. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA // Proceedings of the National Academy of Sciences, 1988, V. 85, №10, 3474–3478.
279
Lynn D. H., Sogin M. L. Assessment of phylogenetic relationships among ciliated protists using partial ribosomal RNA sequences derived from reverse transcripts // BioSystems, 1988, V. 21, №3/4, 249–254.
280
Mollenhauer D. Adolf Pascher (1881–1945) — Romantic Phycologist // Protist, 2001, V. 152, №3, 231–238.
281
Baldauf S. L. et al. A kingdom-level phylogeny of eukaryotes based on combined protein data // Science, 2000, V. 290, №5493, 972–977.
282
Baldauf S. L. The deep roots of eukaryotes // Science, 2003, V. 300, №5626, 1703–1706.
283
Adl S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists // Journal of Eukaryotic Microbiology, 2005, V. 52, №5, 399–451.
284
Keeling P. J. et al. The tree of eukaryotes // Trends in Ecology & Evolution, 2005, V. 20, № 12, 670–676.
285
Baldauf S. L. An overview of the phylogeny and diversity of eukaryotes // Journal of Systematics and Evolution, 2008, V. 46, № 3, 263–273.
286
Koonin E. V. The origin and early evolution of eukaryotes in the light of phylogenomics // Genome Biology, 2010, V. 11, № 5, 209.
287
Adl S. M. et al. The revised classification of eukaryotes // Journal of Eukaryotic Microbiology, 2012, V. 59, № 5, 429–514.
288
Леонтьев Д. В. Общая биология: система органического мира. Конспект лекций (издание 2-е). — Харьковская государственная зооветеринарная академия, 2014.
289
Алешин В. В. Филогения беспозвоночных в свете молекулярных данных: перспективы завершения филогенетики как науки // Труды Зоологического института РАН. 2013. Т. 317, приложение № 2, 9–38.
290
Simpson A. G. B., Roger A. J. The real ‘kingdoms’ of eukaryotes // Current Biology, 2004, V. 14, № 17, R693 — R696.
291
Keeling P. J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany, 2004, V. 91, № 10, 1481–1493.
292
Mullner A. N. et al. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence // International Journal of Systematic and Evolutionary Microbiology, 2001, V. 51, № 3, 783–791.
293
Marin B. Origin and fate of chloroplasts in the euglenoida // Protist, 2004, V. 155, № 1, 13–14.
294
Pringsheim E. G., Hovasse R. The loss of chromatophores in Euglena gracilis // New Phytologist, 1948, V. 47, № 1, 52–87.
295
Kolisko M. et al. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine / saline habitats // Environmental Microbiology, 2010, V. 12, № 10, 2700–2710.
296
Hongoh Y. et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut // Science, 2008, V. 322, № 5904, 1108–1109.
297
Carpenter K. J., Keeling P. J. Morphology and phylogenetic position of Eucomonympha imla (Parabasalia: Hypermastigida) // Journal of Eukaryotic Microbiology, 2007, V. 54, № 4, 325–332.
298
Misof B. et al. Phylogenomics resolves the timing and pattern of insect evolution // Science, 2014, V. 346, № 6210, 763–767.
299
Sutherland J. L. et al. Protozoa from Australian termites // Quarterly Journal of Microscopic Science, 1933, V. 76, 145–173.
300
Wenzel M. et al. Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis // European Journal of Protistology, 2003, V. 39, № 1, 11–23.
301
Margulis L. The conscious cell // Annals of the New York Academy of Sciences, 2001, V. 929, № 1, 55–70.
302
Radek R., Nitsch G. Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation // European Journal of Protistology, 2007, V. 43, № 4, 281–294.
303
Brugerolle G. Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate // Protoplasma, 2004, V. 224, № 1, 49–59.
304
Wier A. et al. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber // Proceedings of the National Academy of Sciences, 2002, V. 99, № 3, 1410–1413.
305
Заварзин Г. А. Роль комбинаторных событий в развитии биоразнообразия // Природа. 2002. № 1.
306
Красилов В. А. Нерешенные проблемы теории эволюции. — Владивосток: Дальневосточный научный центр АН СССР, 1986.
307
Keeling P. J. The endosymbiotic origin, diversification and fate of plastids // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V. 365, № 1541, 729–748.
308
Beakes G. W., Glockling S. L., Sekimoto S. The evolutionary phylogeny of the oomycete “fungi” // Protoplasma, 2012, V. 249, № 1, 3–19.
309
Turner A. Microscopical advances: the posterity of Huygens’ simple microscope of 1678 // ENDOXA, 2004, V. 1, № 19, 41–58.
310
Hadzi J. An attempt to reconstruct the system of animal classification // Systematic Zoology, 1953, V. 2, № 4, 145–154.
311
Leander B. S. et al. Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans // Journal of Eukaryotic Microbiology, 2003, V. 50, № 5, 334–340.
312
Obornik M. et al. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again // International Journal for Parasitology, 2009, V. 39, № 1, 1–12.
313
Adl et al., 2005.
314
Cavalier-Smith T. A revised six-kingdom system of life // Biological Reviews, 1998, V. 73, № 3, 203–266.
315
Finet C. et al. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants // Current Biology, 2010, V. 20, № 24, 2217–2222.
316
Wickett N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants // Proceedings of the National Academy of Sciences, 2014, V. 111, № 45, E4859 — E4868.
317
Graham L. E. et al. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land // American Journal of Botany, 2012, V. 99, № 1, 130–144.
318
Пономаренко А. Г. Основные события в эволюции биосферы // Проблемы доантропогенной эволюции биосферы. — М.: Наука, 1993.
319
Kenrick B. Alternation of generations in land plants: new phylogenetic and palaeobotanical evidence // Biological Reviews, 1994, V. 69, № 3, 293–330.
320
Graham L. E., Cook M. E., Busse J. S. The origin of plants: body plan changes contributing to a major evolutionary radiation // Proceedings of the National Academy of Sciences, 2000, V. 97, № 9, 4535–4540.
321
Журавлев А. Ю. Ранняя история Metazoa — взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75. № 6, 411–465.
322
Fritzsch B., Straka H. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies // Journal of Comparative Physiology A, 2014, V. 200, № 1, 5–18.
323
Pena J. F. et al. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges // EvoDevo, 2016, V. 7, № 1, 13.
324
James T. Y., Berbee M. L. No jacket required — new fungal lineage defies dress code // Bioessays, 2012, V. 34, № 2, 94–102.
325
Karpov S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi // Protist, 2013, V. 164, № 2, 195–205.
326
Karpov S. A. et al. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia // Frontiers in Microbiology, 2014, V. 5, 112.
327
Mendoza L., Taylor J. W., Ajello L. The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary // Annual Reviews in Microbiology, 2002, V. 56, № 1, 315–344.
328
Suga H., Ruiz-Trillo I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity // Developmental Biology, 2013, V. 377, № 1, 284–292.
329
Paps J., Ruiz-Trillo I. Animals and their unicellular ancestors // eLS, 2010.
330
Sebe-Pedros A. et al. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki // Molecular Biology and Evolution, 2010, V. 28, № 3, 1241–1254.
331
Sebe-Pedros A., Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family // Current Topics in Developmental Biology, 2017, V. 122, 1–26.
332
Sebe-Pedros A. et al. Early evolution of the T-box transcription factor family // Proceedings of the National Academy of Sciences, 2013, V. 110, № 40, 16050–16055.
333
Mikhailov K. V. et al. The origin of Metazoa: a transition from temporal to spatial cell differentiation // Bioessays, 2009, V. 31, № 7, 758–768.
334
Paps J. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist, 2013, V. 164, № 1, 2–12.
335
Sebe-Pedros A., Degnan B. M., Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective // Nature Reviews. Genetics, 2017, V. 18, 498–512.
336
James T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny // Nature, 2006, V. 443, 818–822.
337
Xu H. et al. The α-aminoadipate pathway for lysine biosynthesis in fungi // Cell Biochemistry and Biophysics, 2006, V. 46, № 1, 43–64.
338
Vogel H. J. Distribution of lysine pathways among fungi: evolutionary implications // The American Naturalist, 1964, V. 98, № 903, 435–446.
339
Moroz L. L. On the independent origins of complex brains and neurons // Brain, Behavior and Evolution, 2009, V. 74, № 3, 177–190.
340
Moroz L. L. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature, 2014, V. 510, № 7503, 109–114.
341
Jekely G., Paps J., Nielsen C. The phylogenetic position of ctenophores and the origin (s) of nervous systems // EvoDevo, 2015, V. 6, № 1, 1.
342
Малахов В. В. Симметрия и щупальцевый аппарат книдарий // «Биология моря», 2016, т. 42, № 4, 249–259.
343
Holland P. W. H. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters, 2015, V. 1, № 1, 1.
344
Adl et al., 2005.
345
Butterfield N. J. Early evolution of the Eukaryota // Palaeontology, 2015, V. 58, № 1, 5–17.
346
Burki F. et al. Phylogenomics reshuffles the eukaryotic supergroups // PloS One, 2007, V. 2, № 8, e790.
347
Hackett J. D. et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates // Molecular Biology and Evolution, 2007, V. 24, № 8, 1702–1713.
348
He D. et al. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria // Molecular Phylogenetics and Evolution, 2016, V. 101, 1–7.
349
Adl et al., 2012.
350
Burki F. et al. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins // Proceedings of the Royal Society of London, B: Biological Sciences, 2012, rspb20112301.
351
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree // Biology Letters, 2010, V. 6, № 3, 342–345.
352
Cavalier-Smith T. Protist phylogeny and the high-level classification of Protozoa // European Journal of Protistology, 2003, V. 39, № 4, 338–348.
353
Stechmann A., Cavalier-Smith T. The root of the eukaryote tree pinpointed // Current Biology, 2003, V. 13, № 17, R665 — R666.
354
Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology, 2009, V. 56, № 1, 26–33.
355
Roger A. J., Simpson A. G. B. Evolution: revisiting the root of the eukaryote tree // Current Biology, 2009, V. 19, № 4, R165 — R167.
356
Burki et al., 2007.
357
Baldauf, 2008.
358
Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” // Proceedings of the National Academy of Sciences, 2009, V. 106, № 10, 3859–3864.
359
He D. et al. An alternative root for the eukaryote tree of life // Current Biology, 2014, V. 24, № 4, 465–470.
360
Adl et al., 2012.
361
Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V. 365, № 1537, 111–132.
362
Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa // European Journal of Protistology, 2013, V. 49, № 2, 115–178.
363
Cavalier-Smith T. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications // Annual Review of Ecology, Evolution, and Systematics, 2013a, V. 44, 145–172.
364
Cavalier-Smith T. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa // Molecular Phylogenetics and Evolution, 2014, V. 81, 71–85.
365
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion // Philosophical Transactions of the Royal Society, B: Biological Sciences, 2017, V. 372, 1713.
366
Cavalier-Smith, 2009.
367
Cavalier-Smith T. The origins of plastids // Biological Journal of the Linnean Society, 1982, V. 17, № 3, 289–306.
368
Cavalier-Smith, 2013a.
369
Keeling P. J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany, 2004, V. 91, № 10, 1481–1493.
370
Burki F. The eukaryotic tree of life from a global phylogenomic perspective // Cold Spring Harbor. Perspectives in Biology, 2014, V. 6, № 5, a016147.
371
Adl et al., 2012.
372
Burki F., Shalchian-Tabrizi K., Pawlowski J. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes // Biology Letters, 2008, V. 4, № 4, 366–369.
373
Hampl et al., 2009.
374
Adl et al., 2012.
375
Germot A., Philippe H. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family // Journal of Eukaryotic Microbiology, 1999, V. 46, № 2, 116–124.
376
Germot, Philippe, 1999.
377
Philippe H., Germot A., Moreira D. The new phylogeny of eukaryotes // Current Opinion in Genetics & Development, 2000, V. 10, № 6, 596–601.
378
Philippe H. Early — branching or fast — evolving eukaryotes? An answer based on slowly evolving positions // Proceedings of the Royal Society of London, B: Biological Sciences, 2000, V. 267, № 1449, 1213–1221.
379
Philippe, 2000.
380
Philippe et al., 2000. «Примитивность» — двусмысленный термин. В данном случае Эрве Филипп называет примитивностью раннее отхождение группы от общего ствола (а не простоту организации или сходство с общим предком — такие значения термина «примитивность» тоже существуют, но здесь они неактуальны).
381
Baldauf, 2003.
382
Завадский К. М., Колчинский Э. И. Эволюция эволюции. — Л.: Наука, 1977.
383
Simpson G. G. Periodicity in vertebrate evolution // Journal of Paleontology, 1952, V. 26, № 3, 359–370.
384
Colbert E. H. Explosive evolution // Evolution, 1953, V. 7, № 1, 89–90.
385
Chaline J. Rodents, evolution, and prehistory // Endeavour, 1977, V. 1, № 2, 44–51.
386
Rokas A., Carroll S. B. Bushes in the tree of life // PLoS Biology, 2006, V. 4, № 11, e352.
387
Pawlowski J. The new micro-kingdoms of eukaryotes // BMC Biology, 2013, V. 11, № 1, 40.
388
Walker G., Dacks J. B., Martin Embley T. Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as “Mastigamoeba invertens” // Journal of Eukaryotic Microbiology, 2006, V. 53, № 2, 65–78.
389
Heiss A. A., Walker G., Simpson A. G. B. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity // European Journal of Protistology, 2013, V. 49, № 3, 354–372.
390
Minge M. A. et al. Evolutionary position of breviate amoebae and the primary eukaryote divergence // Proceedings of the Royal Society of London, B: Biological Sciences, 2009, V. 276, № 1657, 597–604.
391
Burki, 2014.
392
Brown M. W. et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads // Proceedings of the Royal Society of London, B: Biological Sciences, 2013, V. 280, № 1769, 20131755.
393
Cavalier-Smith, 2009.
394
Cavalier-Smith T., Chao E. E. Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species // Protist, 2010, V. 161, № 4, 549–576.
395
Torruella G., Moreira D., Lopez-Garcia P. Phylogenetic and ecological diversity of apusomonads, a lineage of deep-branching eukaryotes // Environmental Microbiology Reports, 2017, V. 9, № 2, 113–119.
396
Brown et al., 2013.
397
Paps J. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist, 2013, V. 164, № 1, 2–12.
398
Cavalier-Smith et al., 2014.
399
Atkins M. S., McArthur A. G., Teske A. P. Ancyromonadida: a new phylogenetic lineage among the protozoa closely related to the common ancestor of metazoans, fungi, and choanoflagellates (Opisthokonta) // Journal of Molecular Evolution, 2000, V. 51, № 3, 278–285.
400
Carter H. J. XXXII. — On the fresh-and salt-water Rhizopoda of England and India // Journal of Natural History, 1865, V. 15, № 88, 277–293.
401
Brugerolle G. et al. Collodictyon triciliatum and Diphylleia rotans (= Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups // Protist, 2002, V. 153, № 1, 59–70.
402
Zhao S. et al. Collodictyon — an ancient lineage in the tree of eukaryotes // Molecular Biology and Evolution, 2012, V. 29, № 6, 1557–1568.
403
Brown et al., 2013.
404
Burki, 2014.
405
Cavalier-Smith T. et al. Multigene phylogeny resolves deep branching of Amoebozoa // Molecular Phylogenetics and Evolution, 2015, V. 83, 293–304.
406
Burki, 2014.
407
Голиченков В. А., Никерясова Е. Н., Попов Д. В. Значение массы клеток для становления и эволюции онтогенеза // Современная эволюционная морфология. — Киев: Наукова думка, 1991. С. 130–139.
408
Corliss J. O. The kingdom Protista and its 45 phyla // BioSystems, 1984, V. 17, № 2, 87–126.
409
Corliss J. O. Protistan diversity and origins of multicellular / multitissued organisms // Italian Journal of Zoology, 1989, V. 56, № 3, 227–234.
410
Dickinson D. J., Nelson W. J., Weis W. I. An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity // BioEssays, 2012, V. 34, № 10, 833–840.
411
Dickinson D. J., Nelson W. J., Weis W. I. Studying epithelial morphogenesis in Dictyostelium // Tissue morphogenesis: methods and protocols. Springer New York, 2015. 267–281.
412
Miller P. W. et al. The evolutionary origin of epithelial cell-cell adhesion mechanisms // Current Topics in Membranes, 2013, V. 72, 267–311.
413
Worley A. C., Raper K. B., Hohl M. Fonticula alba: a new cellular slime mold (Acrasiomycetes) // Mycologia, 1979, V. 71, № 4, 746–760.
414
Deasey M. C. Spore formation by the cellular slime mold Fonticula alba // Mycologia, 1982, V. 74, № 4, 607–613.
415
Brown M. W., Spiegel F. W., Silberman J. D. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta // Molecular Biology and Evolution, 2009, V. 26, № 12, 2699–2709.
416
Paps, Ruiz-Trillo, 2010.
417
Brown M. W. et al. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria // Current Biology, 2012, V. 22, № 12, 1123–1127.
418
Mikhailov et al., 2009.
419
Беклемишев К. В. Зоология беспозвоночных. Курс лекций. — М.: Издательство МГУ, 1979.
420
Kirschner M., Gerhart J. Evolvability // Proceedings of the National Academy of Sciences, 1998, V. 95, № 15, 8420–8427.
421
Rupke N. A. Richard Owen’s vertebrate archetype // Isis, 1993, V. 84, № 2, 231–251.
422
Список может показаться произвольным, но это совершенно неизбежная особенность выбранного подхода. Произвольной (в той или иной степени) будет любая попытка выделить счетное число пороговых событий в истории жизни на целой планете. Хотя, разумеется, каждый сделанный тут выбор имеет свое объяснение: например, появление эукариот не вошло в список, потому что его можно включить в тему кислородной революции, а появление первых многоклеточных животных — потому что его гораздо труднее датировать, чем кембрийский взрыв.
423
De Duve C. Constraints on the origin and evolution of life // Proceedings of the American Philosophical Society, 1998, V. 142, №4, 525–532.
424
Fedo C. M., Whitehouse M. J. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s Earliest Life // Science, 2002, V. 296, №5572, 1448–1452.
425
Nutman A. P. et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures // Nature, 2016, V. 537, 535–538.
426
Bell E. A. et al. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon // Proceedings of the National Academy of Sciences, 2015, V. 112, №47, 14518–14521.
427
Harrison T. M., Bell E. A., Boehnke P. Hadean zircon petrochronology // Reviews in Mineralogy and Geochemistry, 2017, V. 83, №1, 329–363.
428
Woese C. R. On the evolution of cells // Proceedings of the National Academy of Sciences, 2002, V. 99, №13, 8742–8747.
429
Wacey D. et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia // Nature Geoscience, 2011, V. 4, №10, 698–702.
430
Sessions A. L. et al. The continuing puzzle of the great oxidation event // Current Biology, 2009, V. 19, №14, R567–R574.
431
Schopf J. W. The fossil record of cyanobacteria // Ecology of cyanobacteria II. Springer Netherlands, 2012. 15–36.
432
Barbieri M. Code Biology. A New Science of Life. Springer, 2015.
433
Lyons T. W., Reinhard C. T., Planavsky N. J. The rise of oxygen in Earth’s early ocean and atmosphere // Nature, 2014, V. 506, 307–315.
434
Esser C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes // Molecular Biology and Evolution, 2004, V. 21, №9, 1643–1660.
435
Кунин Е.В. Логика случая. — М.: Центрполиграф, 2014.
436
Марков А.В., Куликов A.M. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы // Происхождение и эволюция биосферы. — Новосибирск: ИК РАН, 2005.
437
Уорд П., Киршвинк Д. Новая история жизни на Земле. — СПб.: Питер, 2016.
438
Wang Y., Wang Y., Du W. The long-ranging macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China // Alcheringa: An Australasian Journal of Palaeontology, 2016, V. 40, №3, 303–312.
439
Butterfield N. J. Early evolution of the Eukaryota // Palaeontology, 2015, V. 58, №1, 5–17.
440
Retallack G. J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V. 235, 71–87.
441
El Albani A. et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago // Nature, 2010, V. 466, 100–104.
442
Knoll A. H. et al. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V. 361, №1470, 1023–1038.
443
Bengtson S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt // Nature Ecology & Evolution, 2017, V. 1, 0141.
444
Rasmussen B. et al. Reassessing the first appearance of eukaryotes and cyanobacteria // Nature, 2008, V. 455, №7216, 1101–1104.
445
Kopp R. E. et al. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis // Proceedings of the National Academy of Sciences, 2005, V. 102, №32, 11131–11136.
446
Knoll A. H. et al. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V. 361, №1470, 1023–1038.
447
Butterfield N. J. Probable proterozoic fungi // Paleobiology, 2005, V. 31, №1, 165–182.
448
Retallack G. J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V. 235, 71–87.
449
Nursall J. R. Oxygen as a prerequisite to the origin of the Metazoa // Nature, 1959, V. 183, 1170–1172.
450
Mills D. B. et al. Oxygen requirements of the earliest animals // Proceedings of the National Academy of Sciences, 2014, V. 111, №11, 4168–4172.
451
Sperling E. A., Knoll A. H., Girguis P. R. The ecological physiology of Earth’s second oxygen revolution // Annual Review of Ecology, Evolution, and Systematics, 2015, V. 46, 215–235.
452
Harland W. B., Rudwick M. J. S. The great infra-Cambrian ice age // Scientific American, 1964, V. 211, 28–36.
453
Budyko M. I. The effect of solar radiation variations on the climate of the earth // Tellus, 1969, V. 21, №5, 611–619.
454
Ломизе М.Г., Хаин В.Е. Геотектоника с основами геодинамики. — М.: Издательство МГУ, 1995.
455
Donnadieu Y. et al. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff // Nature, 2004, V. 428, 303–306.
456
Hoffman P. F., Schrag D. P. Snowball Earth // Scientific American, 1999, №9.
457
Дьяков Ю.Т. Введение в альгологию и микологию. — М.: Издательство МГУ, 2000.
458
Kirschvink J. L. Red Earth, White Earth, Green Earth, Black Earth // Engineering and Science, 2005, V. 68, №4, 10–20.
459
Chen L. et al. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils // Nature, 2014, V. 516, 238–241.
460
Seilacher A. Evolutionary innovation versus ecological incumbency // Planetary Systems and the Origins of Life. Cambridge, 2007. 193–209.
461
Sperling E. A., Vinther J. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes // Evolution & Development, 2010, V. 12, №2, 201–209.
462
Tang F. et al. Eoandromeda and the origin of Ctenophora // Evolution & Development, 2011, V. 13, №5, 408–414.
463
Ivantsov A. Y. New reconstruction of Kimberella, problematic Vendian metazoan // Paleontological Journal, 2009, V. 43, №6, 601–611.
464
Seilacher A., Hagadorn J. W. Early molluscan evolution: evidence from the trace fossil record // Palaios, 2010, V. 25, №9, 565–575.
465
Martin M. W. et al. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution // Science, 2000, V. 288, №5467, 841–845.
466
Budd G. E. The earliest fossil record of the animals and its significance // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2008, V. 363, №1496, 1425–1434.
467
Xiao S., Laflamme M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota // Trends in Ecology & Evolution, 2009, V. 24, №1, 31–40.
468
Gregory J. W., Barrett B. H. The major terms of the pre-Paleozoic // The Journal of Geology, 1927, V. 35, №8, 734–742.
469
Shu D. On the phylum Vetulicolia // Chinese Science Bulletin, 2005, V. 50, №20, 2342–2354.
470
Журавлев А.Ю. Скелетный докембрий // Природа. 2006. №12.
471
Erwin D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals // Science, 2011, V. 334, №6059, 1091–1097.
472
Wheat C. W., Wahlberg N. Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda // Systematic Biology, 2012, V. 62, №1, 93–109.
473
Lee M. S. Y., Soubrier J., Edgecombe G. D. Rates of phenotypic and genomic evolution during the Cambrian explosion // Current Biology, 2013, V. 23, №19, 1889–1895.
474
Budd G. E., Jackson I. S. C. Ecological innovations in the Cambrian and the origins of the crown group phyla // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2016, V. 371, №1685, 20150287.
475
Isozaki Y. et al. Beyond the Cambrian explosion: from galaxy to genome // Gondwana Research, 2014, V. 3, №25, 881–883.
476
Brennan S. T., Lowenstein T. K., Horita J. Seawater chemistry and the advent of biocalcification // Geology, 2004, V. 32, №6, 473–476.
477
Seilacher A. Biomat-related lifestyles in the Precambrian // Palaios, 1999, V. 14, №1, 86–93.
478
McMenamin M. A. S. The garden of Ediacara // Palaios, 1986, V. 1, №2, 178–182.
479
Laflamme M., Xiao S., Kowalewski M. Osmotrophy in modular Ediacara organisms // Proceedings of the National Academy of Sciences, 2009, V. 106, №34, 14438–14443.
480
Stanley S. M. An ecological theory for the sudden origin of multicellular life in the late Precambrian // Proceedings of the National Academy of Sciences, 1973, V. 70, №5, 1486–1489.
481
Bottjer D. J., Hagadorn J. W., Dornbos S. Q. The Cambrian substrate revolution // GSA Today, 2000, V. 10, №9, 1–7.
482
Butterfield N. J. Plankton ecology and the Proterozoic-Phanerozoic transition // Paleobiology, 1997, V. 23, №2, 247–262.
483
Алешин В.В. и др. О положении насекомых в кладе Pancrustacea // Молекулярная биология. 2009. Т. 43. №5. 866–881.
484
Алешин В.В., Петров Н.Б. Происхождение насекомых: взгляд генетика // Суперкомпьютерные технологии в науке, образовании и промышленности. — М.: Издательство МГУ, 2009.
485
Butterfield N. J. Oxygen, animals and oceanic ventilation: an alternative view // Geobiology, 2009, V. 7, №1, 1–7.
486
Zhang X. et al. Triggers for the Cambrian explosion: hypotheses and problems // Gondwana Research, 2014, V. 25, №3, 896–909.
487
Reynolds P. D. The scaphopoda // Advances in Marine Biology, 2002, V. 42, 137–236.
488
Mulkidjanian A. Y. et al. Origin of first cells at terrestrial, anoxic geothermal fields // Proceedings of the National Academy of Sciences, 2012, V. 109, №14, E821–E830.
489
Beraldi-Campesi H., Retallack G. J. Terrestrial ecosystems in the Precambrian // Biological soil crusts: an organizing principle in drylands. Springer International Publishing, 2016. 37–54.
490
Horodyski R. J., Knauth, L. P. Life on Land in the Precambrian // Science, 1994, V. 263, №5146, 494–498.
491
Strother P. K. et al. Earth’s earliest non-marine eukaryotes // Nature, 2011, V. 473, №7348, 505–509.
492
Beraldi-Campesi H. Early life on land and the first terrestrial ecosystems // Ecological Processes, 2013, V. 2, №1, 1.
493
Kennedy M. et al. Late Precambrian oxygenation; inception of the clay mineral factory // Science, 2006, V. 311, №5766, 1446–1449.
494
Yuan X., Xiao S., Taylor T. N. Lichen-like symbiosis 600 million years ago // Science, 2005, V. 308, №5724, 1017–1020.
495
Steemans P. et al. Origin and radiation of the earliest vascular land plants // Science, 2009, V. 324, №5925, 353–353.
496
Graham L. et al. Early terrestrialization: transition from algal to bryophyte grade // Photosynthesis in bryophytes and early land plants. Springer Netherlands, 2014. 9–28.
497
Wellman C. H. The nature and evolutionary relationships of the earliest land plants // New Phytologist, 2014, V. 202, №1, 1-3.
498
Kenrick P. et al. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2012, V. 367, №1588, 519–536.
499
Wilson H. M. Juliformian millipedes from the Lower Devonian of Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic // Journal of Paleontology, 2006, V. 80, №4, 638–649.
500
Anderson L. I., Trewin N. H. An early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland // Palaeontology, 2003, V. 46, №3, 467–509.
501
Ahlberg P. E., Clack J. A. Palaeontology: a firm step from water to land // Nature, 2006, V. 440, 747–749.
502
Selden P. A., Penney D. Fossil spiders // Biological Reviews, 2010, V. 85, №1, 171–206.
503
Garrouste R. et al. A complete insect from the Late Devonian period // Nature, 2012, V. 487, №7409, 82–85.
504
Prokop J., Nel A., Hoch I. Discovery of the oldest known Pterygota in the lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera) // Geobios, 2005, V. 38, №3, 383–387.
505
Meyer-Berthaud B., Soria A., Decombeix A. L. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit // Geological Society, London, Special Publications, 2010, V. 339, №1, 59–70.
506
Meyer-Berthaud B., Scheckler S. E., Wendt J. Archaeopteris is the earliest known modern tree // Nature, 1999, V. 398, №6729, 700–701.
507
Retallack G. J. Afforestation of the land // Soils of the Past. Springer Netherlands, 1990. 399–421.
508
Fielding C. R., Frank T. D., Isbell J. L. The late Paleozoic ice age—a review of current understanding and synthesis of global climate patterns // Geological Society of America Special Papers, 2008, V. 441, 343–354.
509
Raup D. M. Size of the Permo-Triassic bottleneck and its evolutionary implications // Science, 1979, V. 206, №4415, 217–218.
510
Bowring S. A. et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction // Science, 1998, V. 280, №5366, 1039–1045.
511
Raup D. M., Sepkoski J. J. Mass extinctions in the marine fossil record // Science, 1982, V. 215, №4539, 1501–1503.
512
Bambach R. K. Phanerozoic biodiversity mass extinctions // Annual Review of Earth and Planetary Sciences, 2006, V. 34, 127–155.
513
Красилов В.А. Нерешенные проблемы теории эволюции. — Владивосток: Дальневосточный научный центр АН СССР, 1986.
514
Benton M. J. et al. Diversification and extinction in the history of life // Science, 1995, V. 268, №5207, V. 52–58.
515
Sahney S., Benton M. J. Recovery from the most profound mass extinction of all time // Proceedings of the Royal Society of London, B: Biological Sciences, 2008, V. 275, №1636, 759–765.
516
Burgess S. D., Bowring S., Shen S. High-precision timeline for Earth’s most severe extinction // Proceedings of the National Academy of Sciences, 2014, V. 111, №9, 3316–3321.
517
Kump L. R., Pavlov A., Arthur M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia // Geology, 2005, V. 33, №5, 397–400.
518
Уорд П., Киршвинк Д. Новая история происхождения жизни на Земле. — СПб.: Питер, 2016.
519
Benton M. J., Twitchett R. J. How to kill (almost) all life: the end-Permian extinction event // Trends in Ecology & Evolution, 2003, V. 18, №7, 358–365.
520
Knoll A. H. et al. Paleophysiology and end-Permian mass extinction // Earth and Planetary Science Letters, 2007, V. 256, №3, 295–313.
521
Sun Y. et al. Lethally hot temperatures during the Early Triassic greenhouse // Science, 2012, V. 338, №6105, 366–370.
522
Huey R. B., Ward P. D. Hypoxia, global warming, and terrestrial Late Permian extinctions // Science, 2005, V. 308, №5720, 398–401.
523
Benton M. J., Newell A. J. Impacts of global warming on Permo-Triassic terrestrial ecosystems // Gondwana Research, 2014, V. 25, №4, 1308–1337.
524
Расницын А.П. Когда жизнь и не думала умирать // Природа. 2012. №9.
525
Sepkoski J. J. Biodiversity: past, present, and future // Journal of Paleontology, 1997, V. 71, №4, 533–539.
526
Уилсон Э. Хозяева Земли. Социальное завоевание планеты человечеством. — СПб.: Питер, 2014.
527
Wilson E. O. Some central problems of sociobiology // Social Science Information, 1975, V. 14, №6, 5–18.
528
Wilson E. O., Holldobler B. The rise of the ants: a phylogenetic and ecological explanation // Proceedings of the National Academy of Sciences, 2005, V. 102, №21, 7411–7414.
529
Foster K. R., Ratnieks F. L. W. A new eusocial vertebrate? // Trends in Ecology & Evolution, 2005, V. 20, №7, 363–364.
530
Есть данные, что самая настоящая менопауза имеется у некоторых китообразных, а именно у гринд, косаток и, возможно, даже у кашалотов. Это связано с их социальной структурой: молодые самки долгое время остаются в составе группы вместе с матерями. Таким образом, в логике Фостера и Рэтникса нам придется или считать гринд, косаток и кашалотов эусоциальными наравне с человеком, или же признать, что этот критерий эусоциальности все-таки не единственный. McAuliffe K., Whitehead H. Eusociality, menopause and information in matrilineal whales // Trends in Ecology & Evolution, 2005, V. 20, №12, 650.
531
Nowak M. A., Tarnita C. E., Wilson E. O. The evolution of eusociality // Nature, 2010, V. 466, №7310, 1057–1062.
532
Thorne B. L., Grimaldi D. A., Krishna K. Early Fossil History of the Termites // Termites: evolution, sociality, symbioses, ecology. Springer Netherlands, 2000. 77–93.
533
Wilson E. O., Nowak M. A. Natural selection drives the evolution of ant life cycles // Proceedings of the National Academy of Sciences, 2014, V. 111, №35, 12585–12590.
534
Wilson, Holldobler, 2005.
535
Wilson, Nowak, 2014. Составленный Уилсоном и его соавторами список, скорее всего, при желании можно будет дополнить. Независимо возникшая эусоциальность наблюдается, например, у некоторых паразитических плоских червей: Hechinger R. F., Wood A.C., Kuris A. M. Social organization in a flatworm: trematode parasites form soldier and reproductive castes // Proceedings of the Royal Society of London, B: Biological Sciences, 2011, V. 278, №1706, 656–665.
536
Burda H. et al. Are naked and common mole-rats eusocial and if so, why? // Behavioral Ecology and Sociobiology, 2000, V. 47, №5, 293–303.
537
Очень близко к этому сочетанию подошли некоторые китообразные — например, косатки, у которых есть и большой мозг, и сложный социум, и даже менопауза. Но на китообразных действует сильное ограничение: отсутствие возможности использовать огонь. “Даже самый умный дельфин или осьминог не способен изобрести кузнечный горн — и никогда не сможет построить культуру, которая сконструировала бы микроскоп, расшифровала процесс фотосинтеза и сфотографировала спутники Сатурна”, — пишет по этому поводу Эдвард Уилсон.
538
Петров М.К. Пентеконтера. В первом классе европейской школы мысли // Вопросы истории естествознания и техники. 1987. №3. С. 100–109.
539
Kirschvink J. L. Red Earth, White Earth, Green Earth, Black Earth // Engineering and Science, 2005, V. 68, №4, 10–20.
540
Тейяр де Шарден П. Феномен человека. — М., Наука, 1987.
541
Ляпунов А. А. О соотношении понятий материя, энергия и информация. Тезисы доклада, написанного для Международного конгресса по философии (Варна, 1973) // Ляпунов А. А. Проблемы теоретической и прикладной кибернетики. — М., Наука, 1980, 320–323.
542
Simpson A. G. B., Slamovits C. H., Archibald J. M. Protist diversity and eukaryote phylogeny // Handbook of the Protists. Springer, 2017, 1–21.
543
Leontyev D. V., Schnittler M. The Phylogeny of Myxomycetes // Myxomycetes, Academic Press, 2017, 83–106.
544
Janouskovec J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction // Current Biology, 2017, V. 27, № 23, R1270 — R1271.
545
Brown M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic supergroup // Genome Biology and Evolution, 2018, V. 10, № 2, 427–433.
546
Текст интервью, из которого взято это высказывание, выложен в сети по адресу: http://www.pbs.org/lifebeyondearth/resources/intgouldpop.html
547
Erives A. J. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance // Epigenetics & Chromatin, 2017, V. 10, № 1, 55.
548
Raoult D. The post-Darwinist rhizome of life // The Lancet, 2010, V. 375, № 9709, 104–105.
Вернуться к просмотру книги
|