Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - читать онлайн книгу. Автор: Дэйв Голдберг, Джефф Бломквист cтр.№ 4

читать книги онлайн бесплатно
 
 

Онлайн книга - Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности | Автор книги - Дэйв Голдберг , Джефф Бломквист

Cтраница 4
читать онлайн книги бесплатно

Совершение первого шага к общему, согласованному ответу на эти вопросы большинство приписывают немецкому физику Вернеру Гейзенбергу. То, что он сделал, стало совершенно новым подходом к теории материи и физических сил. В июле 1925 года Гейзенберг опубликовал статью, в которой рассматривал старые добрые идеи и гипотезы, в том числе модель атома Бора, но под углом зрения совершенно нового подхода к физике. Он начал так: «В этой работе делается попытка получить основы квантовой теоретической механики, которые базируются исключительно на соотношениях между принципиально наблюдаемыми величинами». Это важный шаг, потому что Гейзенберг таким образом подчеркивает: лежащая в основе квантовой теории математика не обязана согласовываться с чем-то уже известным. Задачей квантовой теории должно стать непосредственное предсказание поведения наблюдаемых объектов – например, цвета световых лучей, испускаемых атомами водорода. Нельзя ожидать от нее сколь-либо удовлетворительного мысленного представления внутреннего механизма поведения атома, потому что это и не нужно, и, может быть, даже нереально. Одним ударом Гейзенберг развеял идею о том, что действия природы непременно согласуются со здравым смыслом. Это не значит, что теория микромира не может согласовываться с нашим повседневным опытом описания движения крупных объектов – например, самолетов или теннисных мячей. Но нужно быть готовым отбросить заблуждение о том, что мелкие предметы оказываются всего лишь маленькими разновидностями крупных, а именно подобное заблуждение и может выработаться в ходе экспериментальных наблюдений.

Нет никаких сомнений, что квантовая теория – вещь хитрая, и уж тем более несомненно, что чрезвычайно хитер и сам подход Гейзенберга. Нобелевский лауреат Стивен Вайнберг, один из величайших современных физиков, так писал о статье Гейзенберга 1925 года:

«Если для читателя остается тайной то, что делал Гейзенберг, он в этом не одинок. Я несколько раз пытался прочитать статью, которую он написал по возвращении с острова Гельголанд, и, хотя я полагаю, что разбираюсь в квантовой механике, так до конца и не уловил обоснования математических действий автора в этой работе. Физики-теоретики в своих самых успешных трудах часто играют одну из двух ролей: они либо мудрецы, либо волшебники… Обычно не так сложно понять работы физиков-мудрецов, но работы физиков-волшебников порой совершенно непостижимы. В этом смысле статья Гейзенберга 1925 года – настоящее волшебство».

Философия Гейзенберга, впрочем, ничего магического собой не представляет. Она проста, и именно она лежит в основе того подхода, которым мы пользуемся в книге: задача объясняющей природу теории – делать количественные предсказания, которые будут сопоставимы с экспериментальными результатами. Мы не имеем возможности разработать теорию, имеющую какое-то отношение к нашему восприятию мира в целом. К счастью, хотя мы и берем на вооружение философию Гейзенберга, будем следовать более понятному подходу к квантовому миру, разработанному Ричардом Фейнманом.

На последних нескольких страницах этой книги мы неоднократно слишком вольно использовали слово «теория», так что, прежде чем продолжить разрабатывать квантовую теорию, будет полезно подробнее взглянуть на более простую. Хорошая научная теория содержит набор правил, определяющих, что может и чего не может случиться в определенной части мироздания. Теория должна позволять делать предсказания, которые впоследствии пройдут проверку наблюдениями. Если предсказания окажутся ложными, то эта теория неверна и подлежит замене. Если предсказания согласуются с наблюдениями, теория жизнеспособна. Ни одна теория не может считаться «истинной», в том смысле что всегда должна быть возможность ее фальсифицировать, то есть доказать ее ложность. Как писал биолог Томас Гексли, «наука – это упорядоченный здравый смысл, в котором множество прекрасных теорий было убито уродливыми фактами». Любая теория, которая не может быть фальсифицирована, не считается научной; более того, можно даже сказать, что она вообще не содержит никакой достоверной информации. Критерий фальсифицируемости отличает научные теории от обычных мнений. Такое научное понимание термина «теория», кстати, отличается от обиходного употребления, при котором под этим словом часто подразумеваются умозрительные рассуждения. Научные теории могут быть умозрительными, пока они не столкнулись с эмпирическими свидетельствами, но утвердившаяся в науке теория всегда подкреплена большим количеством доказательств. Ученые стараются разрабатывать теории, призванные объяснить как можно больше явлений, а физики, в частности, приходят в восторг от перспективы описать все, что вообще может случиться в материальном мире, с помощью небольшого количества правил.

Один из примеров хорошей теории, применимой во множестве случаев, – это теория Исаака Ньютона о всемирном тяготении, опубликованная 5 июля 1687 года в его «Математических началах натуральной философии». Это была первая современная научная теория, и, хотя впоследствии было доказано, что в некоторых случаях она неточна, в целом эта теория оказалась настолько хороша, что используется и сегодня. Более точную теорию тяготения – общую теорию относительности – разработал Эйнштейн в 1915 году.

Ньютоново описание гравитации можно уложить в одно математическое уравнение:


Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Эта формула может показаться простой или сложной – в зависимости от ваших математических познаний. В этой книге мы порой будем прибегать к математике. Тем читателям, которым она дается непросто, советуем пропускать уравнения и не особенно беспокоиться. Мы всегда будем стараться изложить ключевые идеи, не прибегая к математике. Добавили ее в основном из-за того, что она позволяет объяснить, почему вещи таковы, какие они есть. Без этого мы выглядели бы какими-то гуру физики, извлекающими глубокие истины прямо из воздуха, а ни один приличный автор этого не хочет.

Но вернемся к уравнению Ньютона. Представьте, что яблоко ненадежно держится на ветке. Мысли о силе притяжения, которые летним днем заставили конкретное спелое яблоко свалиться Ньютону на голову, согласно научному фольклору, стали источником его теории. Ньютон говорил, что на яблоко действует гравитация, которая тянет его к земле, и эта сила в уравнении представлена буквой F. Так что в первую очередь уравнение позволяет высчитать силу, действующую на яблоко, если вы знаете, что значат символы в правой части формулы.

Буква r обозначает расстояние между центром яблока и центром Земли. Оно возведено в квадрат, потому что Ньютон обнаружил, что сила зависит от квадрата расстояния между объектами. Если обойтись без математики, то это значит, что при увеличении расстояния между яблоком и центром Земли вдвое гравитация уменьшится в 4 раза. Если расстояние утроить, сила притяжения упадет в 9 раз. И так далее. Физики называют такое поведение законом обратных квадратов. Буквы m1 и m2 обозначают массу яблока и массу Земли, и их появление свидетельствует о понимании Ньютоном закономерности: сила гравитационного притяжения между двумя объектами зависит от произведения их масс. Но возникает вопрос: что такое масса? Этот вопрос интересен сам по себе, и, чтобы получить наиболее исчерпывающий ответ, придется подождать, пока мы не заведем разговор о квантовой частице, известной как бозон Хиггса. Грубо говоря, масса – это мера количества «материала» в чем-то; Земля массивнее яблока. Впрочем, такое определение недостаточно удачно. К счастью, Ньютон привел и способ измерения массы объекта независимо от закона гравитации, и этот способ выводится с помощью второго из трех законов движения, столь любимых каждым современным студентом-физиком:

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию