Секстант, которым Тихо Браге пользовался в своей обсерватории Ураниборг.
Прежде чем перейти к обсуждению этих вопросов, я хотел бы обратиться к читателям с тем же увещеванием, какое высказал Тимей, языческий философ, намереваясь говорить о том же, и христиане должны выслушать его с величайшим восхищением – и величайшим стыдом, если не послушаются его.
«Еще бы, Сократ! Все, в ком есть хоть малая толика рассудительности, перед любым неважным или важным начинанием непременно призывают на помощь божество. Но ведь мы приступаем к рассуждениям о Вселенной, намереваясь выяснить, возникла ли она и каким именно образом; значит, нам просто необходимо, если только мы не впали в совершенное помрачение, воззвать к богам и богиням и испросить у них, чтобы речи наши были угодны им, а вместе с тем удовлетворяли бы нас самих. Таким да будет наше воззвание к богам! Но и к самим себе нам следует воззвать, дабы вы наилучшим образом меня понимали, а я возможно более правильным образом развивал свои мысли о предложенном предмете».
(Пер. С. Аверинцева)
О пяти правильных геометрических телах
Во второй книге говорилось, как составлять геометрические тела из правильных плоских фигур; там мы говорили о пяти правильных геометрических телах в числе прочих с точки зрения плоских фигур. Тем не менее там доказано, почему их именно пять, и добавлено, что платоники называли их фигурами мира и с какой стихией в связи с этим сопоставлялось каждое тело. Однако теперь, в преддверии этой книги, я должен снова заговорить об этих фигурах, но теперь уже о них как таковых, а также об их отношении к небесным гармониям; остальное читатель найдет в «Сокращении коперниканской астрономии» (Epitome Astronomiae Copernicanae), том II, книга IV.
Согласно представлениям Кеплера, каждая планета соответствует определенному платоновому телу и его космической геометрии. Марс – это додекаэдр, Венера – икосаэдр, Земля – сфера, Юпитер – тетраэдр, Меркурий – октаэдр, а Сатурн – куб.
Подобным же образом да будет мне позволено здесь кратко изложить порядок пяти геометрических тел в мире, как это было рассказано в «Тайне мироздания»: три из этих тел первичны, а два вторичны. Ибо куб (1) – самый просторный и объемный из них, поскольку он перворожденный и обладает природой целого по самой форме своего рождения. Далее следует тетраэдр (2), который представляет собою словно бы часть рассеченного куба; тем не менее он тоже первичен, поскольку, подобно кубу, обладает пространственным трилинейным углом. В тетраэдр вписан додекаэдр (3), последнее первичное тело, поскольку представляет собой тело, составленное из частей куба и подобных же частей тетраэдра, то есть из неправильных тетраэдров, которыми покрыт вписанный внутрь куб. Далее по подобию следует икосаэдр (4), последнее из вторичных тел, обладающее многолинейным пространственным углом. В самой глубине находится октаэдр (5), подобный кубу: это первое из вторичных тел, которому принадлежит первое место, поскольку оно вписано во все остальные, подобно тому как куб занимает первое место, поскольку описан вокруг всех остальных.
Однако существует и два достойных упоминания, так сказать, брачных союза этих тел из разных классов: мужские тела, куб и додекаэдр, из первичных, женские тела, октаэдр и икосаэдр, и в дополнение к ним один словно бы холостяк либо гермафродит тетраэдр, поскольку он вписан сам в себя, подобно тому как упомянутые женские тела вписаны в мужские, как будто подчинены им, и имеют признаки женского пола в противоположность признакам мужского – то есть углы в противоположность граням. Более того, подобно тому как тетраэдр представляет собой элемент, утробу и словно бы ребро мужского куба, так женский октаэдр представляет собой элемент и составную часть тетраэдра, но по-другому, – и, таким образом, тетраэдр служит посредником в этом брачном союзе.
Главное отличие в этих браках или семьях состоит в следующем: отношение куба рационально. Ибо тетраэдр – это одна треть объема куба, а октаэдр – половина тетраэдра и одна шестая куба; а отношение брачного союза додекаэдра невыразимо (ineffabilis) и притом божественно.
Соседство двух этих слов призывает читателя весьма осторожно обходиться с их смыслом. Ибо слово «невыразимый» не имеет здесь значения «благородный», как было бы в рассуждениях о богословских и божественных материях, а скорее означает «иррациональный», то есть низший по положению. Ведь в геометрии, как сказано в первой книге, много иррационального, что также не имеет никакой связи с божественным. Однако читателю следует вернуться к первой книге, чтобы вспомнить, что такое божественное отношение или божественное сечение. Ведь в иных отношениях, или пропорциях, участвует четыре члена, а в непрерывной пропорции – три; однако божественная пропорция требует единственного соотношения членов вне самой пропорции, а именно – чтобы два меньших члена составляли вместе больший член, как целое. Поэтому сколько в этом брачном союзе с додекаэдром отнимается, так как его пропорция иррациональна, столько же ему и возвращается, так как его иррациональность приближается к божественной. Кроме того, этот брачный союз соответствует объемной звезде, которую можно построить, продолжив пять граней додекаэдра до сведения в одной точке. О построении звезды см. книгу II.
Наконец, следует отметить отношение сфер, описанных вокруг этих тел, к сферам, вписанным в них. В случае тетраэдра это отношение рационально – 100 000: 33 333, или 3: 1; в брачном союзе куба оно иррационально, однако радиус вписанной сферы в квадрате рационален и сам представляет собой квадратный корень одной трети квадрата радиуса (описанной сферы), а именно 100 000: 57 735; в брачном союзе додекаэдра оно очевидно иррационально – 100 000: 79 465; в случае звезды – 100 000: 52 573, половина стороны икосаэдра или половина расстояния между двумя лучами.
2. О родстве между гармоническими отношениями и пятью правильными телами
Подобное родство проявляется разнообразно и многосторонне, однако у него есть четыре степени. Ведь либо родство определяется лишь по внешним признакам тел, либо при построении стороны тела возникают отношения, совпадающие с гармоническими, либо они следуют из уже построенных тел, взятых по отдельности или вместе, либо, наконец, они либо равны, либо приближаются к соотношению сфер, вписанных и описанных вокруг тел.
Пять платоновых тел, на которых, как считал Кеплер, зиждется Вселенная. Все они вписаны в сферу (как показано в отражающем хрустальном шаре).
При родстве первой степени пропорции, где больший член равен трем, родственны треугольным граням тетраэдра, октаэдра и икосаэдра, а если больший член равен четырем, квадратной грани куба, а если пяти – пятиугольной грани додекаэдра. Подобие грани можно обобщить и на меньший член пропорции, то есть, когда одним из членов непрерывного удвоения служит 3, эта пропорция считается родственной трем вышеупомянутым телам, например, 1:3, 2:3, 4:3, 8:3 и так далее; а если это число 5, эта пропорция однозначно соответствует брачному союзу додекаэдра, например, 2:5, 4:5, 8:5, а также 3:5, 3:10, 6:5, 12:5 и 24:5. Родство становится менее вероятным, если это подобие наблюдается в сумме членов, как, например, в пропорции 2:3 сумма членов равна 5 и словно бы говорит о том, что отношение 2:3 родственно додекаэдру. Подобным же образом можно описать родство на основании внешнего вида пространственного угла: у первичных тел пространственный угол трехлинеен, у октаэдра четырехлинеен, у икосаэдра пятилинеен. Таким образом, если один член пропорции связан с числом 3, отношение будет связано с первичными телами, если с 4, то с октаэдром, и, наконец, если с 5, то с икосаэдром. Однако в женских геометрических телах это родство проявлено сильнее, поскольку характеризующая их фигура, скрытая внутри, следует форме пространственного угла: треугольник в октаэдре, пятиугольник в икосаэдре; поэтому 3:5 относится к икосаэдру и его сечениям по обеим причинам.