Расшифрованная жизнь. Мой геном, моя жизнь - читать онлайн книгу. Автор: Крейг Вентер cтр.№ 69

читать книги онлайн бесплатно
 
 

Онлайн книга - Расшифрованная жизнь. Мой геном, моя жизнь | Автор книги - Крейг Вентер

Cтраница 69
читать онлайн книги бесплатно

При высоких температурах, которые выдерживает этот организм, большинство белков денатурирует – этот процесс часто происходит при температурах 50–60 °С, так что я ожидал увидеть белки, значительно измененные в результате эволюции для возможности существования при более высоких температурах. Одно изменение я особенно хотел увидеть, а именно увеличение доли аминокислоты цистин, поскольку цистин может способствовать созданию устойчивой трехмерной структуры белка, образуя прочную химическую связь с другим остатком цистина. Однако оказалось, белок Methanococcus очень похож на белок других микроорганизмов и обладает лишь небольшими отличиями, которыми невозможно объяснить его устойчивость при высоких температурах. Очевидно, для предотвращения денатурации белка при повышении температуры эволюция воспользовалась случайной мутацией, которая лишь немного «отрегулировала» его структуру.

Но это сходство не означало, что в остальном ситуация была понятна. Лишь 44 % белков этого организма, первого из исследуемых архебактерий, походили на ранее определенные белки. Некоторые из его генов, в том числе связанные с основным энергетическим метаболизмом, напоминали гены бактериальной «ветви жизни». Однако с этим резко контрастировал тот факт, что многим генам копирования хромосом, обработки информации и репликации нашлись точные соответствия среди генов эукариот, в том числе среди генов человека и дрожжей. Это стало замечательным подтверждением справедливости теории Вёзе.

К моменту публикации статьи о Methanococcus американское космическое агентство NASA обнародовало некоторые данные о существовании микробной жизни на Марсе. Это подстегнуло интерес средств массовой информации к нашей работе, и мы провели в Национальном пресс-клубе Вашингтона пресс-конференцию, вызвавшую большой ажиотаж. Карл Вёзе заболел и не приехал, и чтобы обеспечить его «присутствие», я организовал видеоконференцию, поскольку именно он должен был быть в центре внимания. Я также хотел отметить заслуги участников экспедиции, которые обнаружили тот самый микроорганизм и культивировали его в лабораторных условиях. Поэтому я пригласил из Вудс-Холского океанографического института руководителя экспедиции Холджера Яннаша – в его честь и назвали этот микроорганизм – и командира батискафа «Алвин» Дадли Фостера. Министерство энергетики представлял заместитель министра. При обсуждении статьи перед журналистами и фотокорреспондентами предстали участвовавшие в секвенировании сотрудники TIGR, мы с Хэмом и редактор Science {99}.

Сообщения о результатах нашей работы появились на первых полосах всех крупных газет Америки и многих других стран: «Подтверждено: микроорганизмы – третья “ветвь жизни”» – объявила USA Today {100}, «Эволюция видов и микроскопическая жизнь, отличная от любой другой» – гласил заголовок в The Christian Science Monitor {101}. Журнал The Economist ограничился заголовком «Сенсация» {102}, а Popular Mechanics объявил: «Пришелец из космоса на Земле» {103}. Ежедневная газета San Jose Mercury News подхватила эту тему, поместив статью под названием «Нечто из научной фантастики» {104}. Вспомнив недавний разговор с мамой, я понял, что вопросы по этому поводу будут возникать снова и снова. Когда я попытался объяснить ей, что наши результаты доказывают реальность существования третьей «ветви жизни», она поинтересовалась, какого происхождения эта жизнь: животного, растительного или минерального. Не в силах что-либо ей объяснить, я отказался от этих попыток, но когда вечером были объявлены результаты нашего исследования, ведущий вечерней программы новостей NBC Том Брокау задал тот же вопрос. Вернулась к этой теме и газета The Washington Post, напечатав материал: «Не животное, не растение и не бактерия. Забудьте про марсианские организмы – весь сыр-бор из-за генетического кода иной формы жизни на Земле» {105}.

Теперь у нас были первые геномы представителей двух из трех «ветвей жизни», и три впервые в истории определенных генома. (Первый геном эукариотического организма – пивных дрожжей, был продемонстрирован еще до нашей публикации о геноме Methanococcus, но сообщение об этом напечатали в Nature уже после появления нашей статьи.) В то же самое время стремительными темпами продолжалось секвенирование EST: вместе с бразильскими учеными мы усиленно занимались исследованиями в области шистосомосоза, также известного как бильгарциоз – вызываемой паразитарными плоскими червями болезни, перерастающей в развивающихся странах в хроническое заболевание. Мы изучили генетические изменения в нервных клетках, обнаружили гены, вызывающие болезнь Альцгеймера, а также, как я и предсказывал в 1991 году в первой статье о методе EST, использовали его для картирования генов в геноме человека.

Я практически всегда преследовал одну и ту же цель – найти способ ускорения секвенирования генома человека. Сотни миллионов, а возможно и миллиарды долларов тратились НИЗ на «картирование» генома, чтобы лишь затем приступить к настоящему секвенированию. Как и в случае генома E. coli, картирование означало деление участков генома человека на проще исследуемые (на данный момент длиной в 100 тысяч пар оснований) клоны, или бактериальные искусственные хромосомы (BAC). Успешно вырастив большие участки дрожжевой последовательности, так называемые дрожжевые искусственные мега-хромосомы (Mega-YACs), Дэниэл Коэн столкнулся с проблемами распада и перегруппировки этих участков. Мировое геномное сообщество решило выстроить все BAC в правильном порядке и начать их секвенировать. Я считал, что использование BAC может сэкономить много времени и немало денег: нужно секвенировать от 500 до 600 пар оснований генетического кода с каждого конца сотен тысяч ВАС-клонов и создать большую базу данных, – так же, как мы сделали с клонами лямбды и геномом Haemophilus. После случайного выбора любой группы ВАС-клона и секвенирования всех 100 тысяч пар оснований его кода, следующим шагом оставалось простое сравнение последовательности с набором конечных участков BAC. Любые совпадения будут заметны сразу, и следующий шаг – секвенирование клонов с наименьшим количеством совпадений, чтобы одновременно построить карту и последовательность. Хэму очень понравилась эта идея, и мы начали ее разрабатывать. Ли Гуд узнал, что мы работаем над усовершенствованием этого метода, и стал его активным сторонником. В итоге мы втроем опубликовали соответствующую статью в Nature. Как и в случае с EST, метод секвенирования BAC вскоре стал стандартным.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию