Введение в поведение. История наук о том, что движет животными и как их правильно понимать - читать онлайн книгу. Автор: Борис Жуков cтр.№ 74

читать книги онлайн бесплатно
 
 

Онлайн книга - Введение в поведение. История наук о том, что движет животными и как их правильно понимать | Автор книги - Борис Жуков

Cтраница 74
читать онлайн книги бесплатно

Однако на свете немало существ, чьи нервные системы устроены сравнительно просто, но у которых тем не менее тоже есть поведение. Внимание исследователей привлекли прежде всего брюхоногие моллюски, которых природа наградила огромными (до десятых долей миллиметра в поперечнике) нейронами. К тому же эти клетки сравнительно немногочисленны и их можно буквально «узнавать в лицо».

Еще в 1967 году американец Деннис Уиллоуз выполнил пионерскую работу такого рода на голожаберном морском моллюске тритонии. Обычно тритония ползает по дну подобно сухопутным слизням, но при встрече с морской звездой совершает резкий рывок вплавь куда-нибудь подальше от хищника. Ни при каких других обстоятельствах тритония не плавает. В виртуозном эксперименте Уиллоуз нашел в нервной системе моллюска конкретный, индивидуально узнаваемый нейрон, возбуждение которого запускало этот довольно сложный поведенческий акт. При этом было ясно, что необходимая для его выполнения последовательность действий (то есть паттерн поведения) не может быть обеспечена активностью одной клетки – она требует согласованной работы некоторой сети или ансамбля нейронов. Найденный Уиллоузом нейрон дает лишь общую команду, а каждая клетка ансамбля сама «знает», что именно ей следует делать по такой команде.

Работа Уиллоуза привлекла внимание коллег, и в последующие годы подобные нервные механизмы были обнаружены у различных моллюсков, а также у пиявок, ракообразных, насекомых и других существ. В ряде случаев удавалось выделить не только нейрон-«дирижер», но и весь клеточный ансамбль, обеспечивающий тот или иной поведенческий акт. Такие нейронные ансамбли стали называть «центральными генераторами паттернов» (ЦГП). Работы по ЦГП стали основой нового научного направления, получившего название нейроэтологии. Не ее ли появление под именем «этофизиологии» прогнозировал Тинберген за полтора десятилетия до работы Уиллоуза (см. примечание в главе 7)? Действительно, трудно не узнать в работе нейронных ансамблей те самые врожденные программы поведения, существование которых постулировали когда-то Лоренц и Тинберген. Структуры, обеспечивающие реализацию этих программ, гипотетические «специфические нервные центры» долгие десятилетия оставались чисто умозрительными, «бумажными» объектами, навлекая на своих авторов обвинения в фантазерстве и игнорировании анатомо-физиологической конкретики. И вот теперь они обретают плоть, их можно идентифицировать, разобрать по клеточкам и даже увидеть воочию, выделив хитро подобранными красителями из остальной нервной ткани и сфотографировав.

Несколько сложнее, правда, разобраться, «как эта штука работает» – как именно взаимодействие нейронов в ансамбле воплощается в целостное поведение. Однако современная техника нейробиологических исследований позволяет уже подступиться и к этой задаче – хотя бы в самых простых случаях. В 2015 году сотрудники лаборатории нейронных цепей и поведения нью-йоркского Рокфеллеровского университета во главе с Эндрю Гордасом опубликовали результаты своих исследований нейронной организации поведения нематоды (круглого червя) Caenorhabditis elegans. Этот крохотный (около миллиметра длиной), живущий всего трое суток червячок в последние десятилетия стал одним из любимейших объектов сразу в нескольких областях биологии – генетике, биологии старения, эмбриологии и т. д. Не обходят его вниманием и нейробиологи, которым он приглянулся тем, что при относительно простой и жестко детерминированной (ровно 302 нейрона на все про все) нервной системе C. elegans имеет довольно развитое поведение.

Большую часть своей короткой жизни C. elegans проводит, рыская в поисках пищи – как правило, какой-нибудь разлагающейся органики. Почуяв вкусный запах (например, изоамилового спирта – верного знака гниющих фруктов), червь обычно прекращает блуждания и устремляется прямиком к источнику запаха. Но изредка он почему-то этого не делает или делает не сразу – даже если микроэлектрод, вживленный в обонятельный нейрон, показывает, что заветный аромат пойман. Группе Гордаса удалось расшифровать нейронный механизм этого непостоянства.

В маленькой нервной системе C. elegans каждый нейрон уникален, его можно определить индивидуально и находить потом такой же нейрон на том же месте у других особей. Естественно, все нейроны червя давно получили кодовые обозначения – «имена». В принятии решения, поворачивать или не поворачивать на запах, как оказалось, ключевую роль играют три вставочных (то есть не являющихся ни рецепторами внешних раздражений, ни мотонейронами, непосредственно отдающими команды мышцам) нейрона, известные как AIB, RIM и AVA. Все три обладают спонтанной активностью – могут генерировать импульсы даже тогда, когда сами не получают их от других нейронов. Но могут и «молчать». Гордас и его коллеги выяснили, что у этой тройки есть три стабильных состояния: все трое «молчат», все трое активны или активен только AIB, а два остальных «молчат». Для того чтобы червяк пошел на запах, нужно, чтобы все три нейрона «молчали». Если в момент ощущения запаха они и так «молчат», нематода без раздумий поворачивает на запах. Если активен только AIB, он тут же «замолкает» – и поворот совершается опять-таки неотвратимо [130]. А вот если активны все трое, то они еще некоторое время обмениваются импульсами между собой и могут так и не «замолкнуть». В этом случае червь, проигнорировав запах, продолжит свои блуждания. Можно предположить, что изученная троица нейронов – это блок контроля, притормаживающий нейроны, обеспечивающие целеустремленное движение на запах, и что нейроны RIM и AVA получают импульсы от других рецепторов (или еще откуда-то). Если они активны – значит, есть какая-то информация, которую следует учесть. Коллективная работа всех трех нейронов, вероятно, и состоит в оценке: есть ли в этой информации что-то, что не позволяет червяку немедленно предаться чревоугодию? И в зависимости от результатов этой оценки нейроны либо «замолкают», разрешая пищевое поведение, либо нет.


Введение в поведение. История наук о том, что движет животными и как их правильно понимать

Заметим, что, как ни просто поведение крохотного червя, исследованное взаимодействие нейронов представляет собой механизм выбора, произвольного контроля поведения. Пресс-релиз Рокфеллеровского университета с изложением результатов группы Гордаса начинался фразой «Даже у червяка есть свободная воля». Конечно, это характерное для подобных текстов преувеличение – от таких нейронных взаимодействий до того, что мы называем свободной волей, дистанция огромного размера. Но, как гласит китайская пословица, «даже дорога в тысячу ли начинается с первого шага». И очень похоже, что работы, подобные исследованию нью-йоркских нейробиологов, как раз и есть первые шаги именно в этом направлении.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию