Метод приручения ИИ естественным образом перекликается с методом его изоляции. Предположим, мы блокировали ИИ таким образом, что он не в состоянии вырваться на свободу, но есть смысл попытаться сформировать у него такую систему мотивации, что даже когда появится возможность побега, у ИИ не возникнет желания покидать свою «песочницу». Правда, если одновременно с этими мерами подключить «растяжки» и множество других предохранительных устройств, шансы на успех приручения резко упадут
[375].
Метод косвенной нормативности
Если в каких-то случаях методы точной спецификации окажутся безнадежным делом, можно было бы попробовать метод косвенной нормативности. Основная идея этого подхода очень проста. Вместо того чтобы изо всех сил пытаться дать точнейшее определение конкретных стандартов и нормативов, мы разрабатываем схему процесса их получения. Затем создаем систему, которая была бы мотивирована выполнить этот процесс и принять полученные в результате стандарты и нормативы
[376]. Например, процесс мог бы заключаться в поиске ответа на эмпирический вопрос, какие предпочтительные действия ожидала бы от ИИ некая идеализированная версия человека, предположим, нас самих. Конечной целью ИИ в таком случае стала бы какая-нибудь версия вроде «делать то, что мы могли бы пожелать, чтобы делал ИИ, если бы долго и упорно размышляли об этом».
Дальнейшее объяснения метода косвенной нормативности мы продолжим в тринадцатой главе. В ней мы вернемся к идее экстраполяции нашего волеизъявления и изучим альтернативные варианты. Косвенная нормативность — очень важный подход в системе методов выбора мотивации. Он позволяет нам большую часть тяжелейшей работы, которую нужно выполнять при точной спецификации конечной цели, перенаправить самому сверхразуму.
Метод приумножения
Последний метод выбора мотивации в нашем списке — приумножение. В его основе лежит следующая идея: вместо того чтобы формировать с чистого листа систему мотивации у ИИ, мы обращаемся к интеллектуальному агенту с уже сложившимися и подходящими нам мотивами поведения. Затем мы расширим когнитивные способности агента до уровня сверхразумных. Если все пойдет хорошо, то метод даст нам сверхразум с приемлемой системой мотивации.
Очевидно, что такой подход нельзя применять в случае создания зародыша ИИ. Но приумножение вполне реально использовать, когда к сверхразумному уровню идут другими путями: при помощи полной эмуляции головного мозга, биологического улучшения интеллектуальных способностей, создания нейрокомпьютерного интерфейса или развития сетей и организаций — когда есть возможность построить систему на основе нормативного ядра (обычных людей), которое уже содержит представление о человеческих ценностях.
Привлекательность метода приумножения может расти прямо пропорционально нашему разочарованию в других подходах к решению проблемы контроля. Создание системы мотивации для зародыша ИИ, которая осталась бы относительно надежной и приносила бы пользу в результате рекурсивного самосовершенствования даже после того, как ИИ превратится в зрелый сверхразум, — дело крайне сложное, особенно если нужно получить верное решение с первой попытки. В случае приумножения мы могли бы как минимум начать с агента, который уже имеет знакомую и схожую с человеческой систему мотивации.
Однако трудно обеспечить сохранность такой сложной, развитой, не идеальной и плохо понимаемой нами самими системы мотивации, такой как человеческая, после взлета ее когнитивного ракетоносителя в стратосферу. Мы уже обсуждали, что в результате несовершенной эмуляции мозга может сохраниться функционирование его интеллекта, но будут утеряны некоторые черты личности. То же самое (хотя, возможно, и в меньшей степени) верно в случае биологического улучшения интеллектуальных способностей, способного в какой-то мере затронуть мотивацию, а также для коллективного улучшения сетей и организаций — фактора, серьезно меняющего социальную динамику (например, будет пересмотрено отношение или к внешним, или внутренним субъектам). Если сверхразум возник в результате движения по одному из этих путей, организатор проекта может столкнуться с тем, что конечная мотивация зрелой системы окажется для него недоступной. Благодаря изяществу и математически четкой определенности архитектуры ИИ — при всей ее неантропоморфной инаковости — она гораздо прозрачнее, несмотря на то что важные аспекты ее функционирования не поддаются формальной проверке.
В конечном счете, сколько бы мы ни подсчитывали преимущества и недостатки метода приумножения, сколько бы ни размышляли, полагаться на него или нет, — выбора у нас, пожалуй, не остается. Если сверхразум получен в результате создания ИИ, использовать метод приумножения нельзя. И напротив, если удалось выйти на уровень сверхразума, двигаясь по иному пути, многие методы выбора мотивации оказываются неприемлемыми. Но даже с учетом всего вышесказанного вопрос о вероятной эффективности применения метода приумножения имеет стратегическое значение, если благодаря ему у нас появляется возможность повлиять на выбор технологии, с помощью которой удастся впервые получить сверхразум.
Резюме
Прежде чем завершить эту главу, имеет смысл суммировать сказанное. Мы различаем два широких класса методов решения проблемы контроля: контроль над возможностями и выбор мотивации. В табл. 10 приводится их обобщенное описание.
Таблица 10. Методы контроля
[Методы контроля над возможностями]
Изоляционные методы
Система изолируется таким образом, что способна воздействовать на внешний мир исключительно посредством разрешенных каналов. Сюда включаются методы физического и информационного ограничения
Стимулирующие методы
Система помещается в среду, в которой ей обеспечиваются соответствующие стимулы. К ним могут относиться социальная интеграция в мир сравнимых с ней по силе субъектов и вознаграждение зашифрованными наградными знаками. Важной возможностью является «антропный захват», хотя он и включает в себя ряд эзотерических соображений