Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации - читать онлайн книгу. Автор: Виктор Попенко cтр.№ 57

читать книги онлайн бесплатно
 
 

Онлайн книга - Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации | Автор книги - Виктор Попенко

Cтраница 57
читать онлайн книги бесплатно

ЭОП — это вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения. В основе действия ЭОП лежит преобразование оптического или рентгеновского изображения в электронное, осуществляемое с помощью фотокатода, а затем электронного изображения в световое (видимое), получаемое на катодолюминесцентном экране. В ЭОП изображение объекта проецируется (с помощью объектива) на фотокатод (при использовании рентгеновских лучей теневое изображение объекта проецируется на фотокатод непосредственно). Излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причем величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения.

Различают ПНВ пассивные, активные, пассивно-активные с ИК прожектером или с импульсной лазерной подсветкой; по назначению — приборы наблюдения и разведки, прицелы, приборы вождения машин. ПНВ имеют неперископическую (для стрелкового оружия) или перископическую конструкцию (для самодвижущейся техники).

В шпионских целях широко применяется инфракрасная фотография (ИФ) — получение фотоснимков в ИК-излучении. Фотоснимки в ИК-излучении можно получать различными методами. Наиболее прост метод непосредственного фотографирования на фотопластинки и пленки, чувствительные к ИК-излучению (инфрапленки или пластинки). При этом на объектив фотоаппарата устанавливают светофильтр, пропускающий ИК-излучение и непрозрачный для видимого света. Длинноволновая граница чувствительности современных инфрафотоматериалов у = 1, 2 мкм.

Чувствительность инфрапленок и пластинок относительно мала, поэтому для ИФ в условиях малой освещенности применяют приборы, состоящие из ЭОП и обычного фотоаппарата. ЭОП, установленный перед объективом фотоаппарата, преобразует невидимое инфракрасное изображение в видимое и одновременно усиливает его яркость. Такие приборы позволяют получать снимки на обычной фотопленке в полной темноте при небольшой мощности облучающего источника ИК-излучения. Длинноволновая граница прибора определяется фотокатодом преобразователя и не превышает у =1,2 мкм.

С помощью специальных приборов можно получать ИФ в области у > 1, 2 мкм. Один из них — инфракрасный видикон — представляет собой телевизионную систему, у которой экран передающей трубки изготовлен из фотопроводящих полупроводниковых материалов, изменяющих свою электропроводность под действием ИК-излучения. Получаемое на экране приемной трубки видимое телевизионное изображение фотографируется обычным фотоаппаратом.

ИФ позволяет получать дополнительную (по сравнению с фотографией в видимом свете или при рассматривании объекта глазом) информацию об объекте. Так как ИК-излучение рассеивается при прохождении через дымку и туман меньше, чем видимое излучение, ИФ позволяет получать четкие снимки предметов, удаленных на большие расстояния.

Благодаря различию коэффициентов отражения и пропускания в видимом и инфракрасном диапазонах на ИФ можно увидеть детали, невидимые глазом и на обычной фотографии.

Существуют приборы, фиксирующие тепловое ИК-излучение объекта, в разных точках которого температура различна. Интенсивность ИК-излучения в каждой точке изображения регистрируется приемником и преобразуется в световой сигнал, который фиксируется на фотопленке. Изображение, получаемое в этом случае, не является ИФ в обычном смысле, так как оно дает лишь картину распределения температуры по поверхности объекта.

Тепловидение

Противник помимо прочих способов маскировки может применять и инфракрасную, т. е. скрытие объектов (целей) от обнаружения средствами инфракрасного видения и противодействие возможному их поражению ракетами с инфракрасными головками самонаведения. Ее осуществляют использованием маскирующих свойств местности, экранированием нагревающихся поверхностей боевых (специальных) машин и других объектов непрозрачными для инфракрасного излучения преградами, применением ложных инфракрасных целей и т. п. Тем не менее подобные цели можно обнаружить по их тепловым лучам — тепловому излучению, частота которого лежит за границами чувствительности (не обладающих нужной способностью восприятия тепловой контрастности) приборов инфракрасного видения, не воспринимающих его.

Хотя, возможно, для кого-то это и неочевидно, но тепловые лучи являются «полноценным» электромагнитным излучением (испускаемым объектами за счет их внутренней энергии); оно зависит от температуры и оптических свойств поверхности объекта и может находиться даже в «радиоволновом» диапазоне частот.

Обнаружение (наблюдение) подобных объектов производится приборами, основанными на применении тепловидения — получения видимого изображения объектов с помощью теплового излучения. На принципе тепловидения основаны тепловизор (позволяет наблюдать цель), термофотоаппарат (позволяет осуществлять фотосъемку), теплолокатор (обнаруживает дальнюю цель и устанавливает ее местоположение), теплопеленгатор (определяет угловые координаты цели и селективно сопровождает ее).

Радиовидение

Радиовидение позволяет получать с помощью радиоволн видимое изображение внутреннего содержания объектов, непрозрачных в оптическом диапазоне длин волн, либо объектов, находящихся в оптически непрозрачной среде. Оно основано на воздействии радиоволн на некоторые люминофоры, изменяющие интенсивность свечения, на полупроводниковые монокристаллы, фотопленки, изменяющие оптические характеристики, на методе сканирования. Радиовидение осуществляется с помощью радиовизоров.

Для радиовидения обычно используют радиоволны миллиметрового и сантиметрового диапазонов, что позволяет различать на оптическом изображении достаточно мелкие детали объекта. Радиоволны, излученные (при т. н. пассивном радиовидении) или рассеянные (при активном) телами, несут информацию об их внутреннем содержимом. Эта информация содержится в распределении интенсивности и фазы радиоволн, в характере их поляризации, времени запаздывания и т. д. Основная задача радиовидения — собрать информацию и отобразить ее в видимом изображении. В радиовидении используют различные физические эффекты и явления. Так, в одном из радиовизоров использовано свойство некоторых люминофоров изменять интенсивность свечения с изменением температуры. Основной элемент этого прибора — экран — представляет собой натянутую пленку из полиэтилентерефталата (лавсана) с напыленным на нее тонким слоем алюминия, который покрыт слоем термочувствительного люминофора. Экран со стороны люминофора подсвечивается ультрафиолетовыми лучами и испускает неяркое, ровное свечение. При попадании на экран радиоизлучения со сложным пространственным распределением интенсивности алюминиевая подложка, поглощая его, нагревается, причем сильнее там, где интенсивность излучения больше. При нагреве люминофора от алюминиевой подложки его свечение ослабевает и на экране возникает видимое негативное изображение. Такой радиовизор позволяет «видеть» объекты в волнах от инфракрасных до диапазона СВЧ с одинаковой чувствительностью; чувствительность экрана определяется характеристиками люминофора и мощностью излучения. Порог визуальной регистрации прибора составляет около 1 МВт / см2. На экране радиовизора видны детали изображения размером порядка нескольких миллиметров.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию