Физика и жизнь. Законы природы: от кухни до космоса - читать онлайн книгу. Автор: Элен Черски cтр.№ 8

читать книги онлайн бесплатно
 
 

Онлайн книга - Физика и жизнь. Законы природы: от кухни до космоса | Автор книги - Элен Черски

Cтраница 8
читать онлайн книги бесплатно

Затем в действие вступили лошади. Каждую полусферу тянули изо всех сил в противоположные стороны по 8 лошадей (всего 16 лошадей). Император и свита с изумлением наблюдали за тем, как лошади безуспешно пытались преодолеть силу невидимого воздуха, сжимавшего две полусферы. Единственным, что удерживало их вместе, была сила молекул воздуха, бомбардирующих сферу величиной с внушительный пляжный мяч. Но даже усилий стольких лошадей оказалось недостаточно, чтобы разъединить полусферы. Когда сражение закончилось в пользу молекул воздуха, Отто фон Герике с торжествующим видом открыл клапан, чтобы впустить воздух внутрь сферы, – и две полусферы рассоединились сами собой. Вопрос о победителе в этом соревновании также отпал сам собой. Давление воздуха оказалось гораздо сильнее, чем кто-либо мог предположить. Если взять весь воздух, откачанный из сферы примерно такого же размера, как в эксперименте Отто фон Герике, и составить из него воображаемый вертикальный столб, то он мог бы (теоретически) выдержать (за счет направленного вверх давления воздуха) нагрузку порядка 2000 килограммов, что примерно соответствует весу крупного взрослого носорога. Это означает, что если вы нарисуете на полу окружность диаметром 50 сантиметров, то давление воздуха на ограниченную ею площадку также равняется весу 2000-килограммового носорога. Крошечные невидимые молекулы воздуха действительно бомбардируют нас с большой силой. Отто провел множество таких представлений для разных аудиторий, а его знаменитая сфера получила известность как магдебургские полушария (Магдебург – родной город ученого).

Эксперименты Отто фон Герике отчасти стали знамениты еще и потому, что о них многие писали. Идеи ученого вошли составной частью научной мысли в книгу Гаспара Шотта, опубликованную в 1657 году. Сведения о вакуумном насосе Отто фон Герике вдохновили Роберта Бойля и Роберта Хука на проведение экспериментов по изучению давления газов.

Вы можете самостоятельно провести подобный эксперимент – без участия лошадей и императора. Найдите кусок толстого, ровного картона, достаточно большой, чтобы полностью закрыть отверстие стакана. Эксперимент лучше проводить над раковиной, на всякий случай. Наполните стакан водой – до ободка и положите сверху кусок картона. Прижмите его параллельно поверхности воды к ободку так, чтобы между ней и картоном не оставалось воздуха. Затем переверните стакан вверх дном – и уберите руку. Картон, на который оказывает давление вся вода в стакане, тем не менее не отпадает. Этому препятствуют молекулы воздуха, которые бомбардируют картон снизу, подталкивая вверх. Давления молекул воздуха вполне достаточно для удержания воды в стакане.

Давление молекул воздуха годится не только для удерживания тех или иных объектов. Его также можно использовать для перемещения объектов, причем пальма первенства в этом деле принадлежит не человеку. Обратите внимание на слона – одного из самых выдающихся специалистов на планете в деле воздействия на свое окружение с помощью воздуха.

Африканский саванный слон – величественный гигант, по обыкновению мирно разгуливающий по пыльной и жаркой африканской саванне. В жизни семьи слонов главную роль играют самки. Самая старшая из них, мать семейства, возглавляет группу слонов, которая бродит по саванне в поисках пищи и воды. Эта группа полагается на мать семейства, поскольку она запоминает окружающий ландшафт и самостоятельно принимает решения. Однако выживание этих животных и их способность противостоять врагам зависит не только от массы тела. У каждого слона оно может быть тяжелым и неуклюжим, но правильно распоряжаться им животному помогает весьма изысканный и чувствительный орган – хобот. Когда семейство слонов перемещается по саванне, они постоянно исследуют окружающий мир посредством этого странного придатка, используя его для сигнализации, обнюхивания, добывания пищи и фырканья.

Хобот слона – инструмент, замечательный во многих отношениях. Он представляет собой сеть взаимосвязанных мышц, способных сгибаться, подниматься и с невероятной ловкостью подбирать с поверхности земли те или иные объекты. Даже если бы возможности хобота исчерпывались только этим, его уже следовало бы считать чрезвычайно полезным органом, однако у хобота есть еще одна важная особенность: две ноздри, которые тянутся по всей его длине. Они представляют собой гибкие трубки, соединяющие кончик вдыхательного канала с легкими слона. Именно здесь начинается самое удивительное.

Когда слониха и ее семейство приближаются к водному источнику, окружающий их «неподвижный» воздух воздействует на них, как и во всех других местах: молекулы воздуха бомбардируют морщинистую серую кожу слонов, поверхность земли и водную поверхность. Мать семейства слегка опережает остальных слонов, раскачивая хоботом, когда она заходит в воду, создавая рябь на ее поверхности. Слониха погружает хобот в воду, закрывает рот, а мощные мышцы на ее груди вздымаются и расширяют грудную клетку. Во время расширения легких молекулы воздуха в них торопятся занять вновь образовавшееся пространство. Но это означает, что на самом кончике вдыхательного канала, где холодная вода соприкасается с воздухом в ноздрях слонихи, остается меньшее количество молекул воздуха, бомбардирующих водную поверхность. То есть они движутся с той же скоростью, но число соударений уменьшается. В результате давление внутри легких слонихи снижается. В итоге в соревновании «кто кого перетолкает» (между молекулами воздуха, бомбардирующими водную поверхность, и молекулами воздуха внутри слонихи) побеждает атмосферный воздух. Давление изнутри уже не в состоянии уравновесить давление снаружи; и вода – единственное, что остается между соревнующимися сторонами. Таким образом, атмосферный воздух проталкивает воду вверх по хоботу слонихи, поскольку воздух внутри животного не может протолкнуть воду обратно. Как только вода займет какое-то дополнительное пространство, плотность молекул воздуха внутри слонихи окажется такой же, какой была изначально, и вода перестанет продвигаться дальше.

Слоны не могут пить воду хоботом: если бы они попытались сделать это, то поперхнулись бы и закашлялись (как и вы, если бы попробовали пить воду носом). Поэтому, как только слониха наберет в хобот примерно 8 литров воды, ее грудная клетка перестает расширяться. Скручивая хобот вверх и вниз, слониха направляет его кончик в рот, а затем с помощью грудных мышц сдавливает грудную клетку, сокращая размер легких. В результате молекулы воздуха внутри слонихи сближаются и поверхность воды, остановившейся на полпути в ее хоботе, бомбардируется ими гораздо сильнее. Сражение между воздухом внутри и снаружи склоняется в пользу первого, и вода выдавливается из хобота в рот слонихи. Она управляет объемом своих легких, контролируя таким образом давление, которое воздух внутри нее оказывает на воздух снаружи. Когда слониха закрывает рот, единственным местом, где может перемещаться что-либо, остается ее хобот и все, что находится у его кончика, будет втягиваться или выталкиваться. Сочетание хобота и легких слона – универсальный инструмент управления воздухом, так что силой, которая втягивает или выталкивает воду, является давление воздуха, а не усилия слона как такового.

Мы делаем, по сути, то же самое, втягивая какую-либо жидкость через соломинку [5]. Когда мы расширяем свои легкие, плотность молекул воздуха в них снижается (количество молекул воздуха не меняется, а объем легких увеличивается). Внутри соломинки остается меньше молекул воздуха, оказывающих давление на поверхность воды. В результате атмосферное давление, воздействующее на оставшуюся жидкость, проталкивает ее вверх по соломинке. Мы называем это всасыванием, однако мы не втягиваем жидкость. Атмосферное давление, толкающее ее вверх, выполняет за нас всю работу. Даже такое тяжелое вещество, как вода, можно перемещать, когда бомбардировка молекулами воздуха с одной стороны сильнее, чем с другой.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию