При этом, как ни странно, ученые того времени знали о генах не так уж мало. Им было известно, что каждый конкретный ген может существовать в нескольких вариантах, или версиях, — аллелях. Что в организме каждый ген представлен двумя экземплярами — одним от папы, другим от мамы. Таким образом, одна особь не может иметь более двух разных аллелей одного гена — хотя всего их могут существовать десятки. При половом размножении особь передаст каждому из своих потомков только по одному аллелю каждого гена, причем если они разные, то какой достанется данному конкретному потомку — дело чистого случая. Если в организме встречаются два разных аллеля одного гена, то обычно один из них внешне не проявляется, но при этом не исчезает, не изменяется и может быть передан последующим поколениям. И самое главное — гены не смешиваются и не делятся на части, каждый из них наследуется по принципу «всё или ничего», то есть дискретно. Выражаясь современным языком, можно сказать, что наследственная информация существует и передается от родителей к потомкам только в цифровой записи
[6].
Все это было известно уже Менделю, хотя он и не пользовался термином «ген». Но лишь почти через сто лет после его работы наука наконец-то выяснила материальную природу гена. Оказалось, что ген — это участок молекулы дезоксирибонуклеиновой кислоты (ДНК). Длинные двойные цепочки этого полимера обладают замечательным свойством: каждая из них может служить матрицей для воссоздания второй (подобно тому, как с ключа можно сделать слепок, со слепка — новый ключ и т. д.). Это обеспечивается уникальной последовательностью азотистых оснований, которыми эти цепочки соединяются друг с другом. И эта же последовательность с помощью довольно сложного молекулярного механизма определяет последовательность аминокислот — молекулярных «кирпичиков», из которых строятся белки.
Таким образом, ген — это участок молекулы ДНК, кодирующий тот или иной белок. Работа этого белка в организме и формирует то, что мы называем наследственным признаком. Например, красные цветы красны потому, что в организме растения работает белок-фермент, производящий красный пигмент. А у растений с белыми цветами этот фермент отсутствует или неактивен из-за «опечатки» в соответствующем участке ДНК.
Впрочем, довольно скоро выяснилось, что все не так просто. Вот, скажем, клетки нашей кожи производят белок кератин. Для этого у них есть соответствующий ген. Он есть и во всех прочих клетках нашего организма, но ни нейроны, ни лимфоциты, ни клетки слюнных желез кератина не производят. Да и клетки кожи могут менять объемы его производства: те участки, которые постоянно обо что-то трутся, производят кератина больше (так возникают мозоли). Оказалось, что помимо кодирующих участков в ДНК есть и другие — включающие-выключающие ген и регулирующие интенсивность его работы. Ученые договорились было считать, что ген — это кодирующий участок плюс его «выключатели». Однако выяснилось, что один регуляторный участок (энхансер) может управлять сразу несколькими кодирующими.
Мало того, большинство генов оказалось гораздо длиннее, чем нужно для кодирования последовательности аминокислот в их белках. Когда с такого гена снята «рабочая копия» (матричная рибонуклеиновая кислота, мРНК), специальные ферменты вырезают из нее лишние куски, и только после этого она идет в работу. Причем «лишними» могут в одном случае оказаться одни куски, а в другом — другие. В результате с одного участка ДНК считываются несколько довольно разных белков — как если бы там было закодировано, скажем, победоносец, а после вмешательства ферментов получались бы то обед, то понос, то донос, то бес, то песец…
На самом деле это сравнение не вполне точно: «победоносец» — слово хоть и не очень естественное, но вполне осмысленное и понятное. А та молекула РНК, которая считана с гена, выглядит совершенно бессмысленной последовательностью «букв», из которой только после «редактирования» ферментами (ученые называют этот процесс сплайсингом) можно получить осмысленные «слова».
Это скорее напоминает эффект ключа-трафарета, знакомого всем по титрам культового советского фильма «Приключения Шерлока Холмса и доктора Ватсона». Помните? Весь экран заполнен стилизованными буквами, не складывающимися ни в какие слова. Но вот невидимая рука накладывает на этот буквенный хаос черный лист с прорезями в определенных местах — и в этих прорезях появляется надпись: «Шерлок Холмс — Василий Ливанов».
Примерно так и работает сплайсинг — с той только разницей, что выполняющие его ферменты-«редакторы» имеют дело не с двумерным буквенным полем, а с линейной последовательностью «букв» — нуклеотидов. Зачем и почему почти вся наша наследственность устроена подобным «криптографическим» образом — вопрос, конечно, интересный, но мы его сейчас обсуждать не будем. (Скажем лишь, что дело тут, вероятно, не в шифровании, а в возможности компактно закодировать несколько вариантов одного и того же инструмента-белка — что-то вроде отвертки или дрели с разными насадками.) Нам сейчас важно другое: тот участок ДНК, который таким образом кодирует целый набор разных белков, — это один ген? Или несколько разных?
Однако при любом толковании понятия «ген» для него остаются в силе те свойства, о которых мы говорили выше: дискретность, вариативность, случайное распределение и независимое наследование, двойной набор в каждом организме
[7].