Фейнмановские лекции по физике. Современная наука о природе - читать онлайн книгу. Автор: Ричард Фейнман cтр.№ 22

читать книги онлайн бесплатно
 
 

Онлайн книга - Фейнмановские лекции по физике. Современная наука о природе | Автор книги - Ричард Фейнман

Cтраница 22
читать онлайн книги бесплатно

А вот задача посложнее: домкрат, показанный на фиг. 4.5.


Фейнмановские лекции по физике. Современная наука о природе

Фиг. 4.5. Домкрат.


Посмотрим, как в таком случае применять этот принцип. Для вращения домкрата служит ручка длиной 1 м, а нарезка винта имеет 4 витка на 1 см. Какую силу нужно приложить к ручке, чтобы поднять 1 m? Желая поднять 1 т на 1 см, мы должны обойти домкрат четырежды, каждый раз делая по 6,28 м (2πr), а всего 25,12 м. Используя различные блоки и т. п., мы действительно можем поднять 1 т с помощью неизвестного груза W, приложенного к концу ручки. Ясно, что W равно примерно 400 г. Это – следствие сохранения энергии.

И еще более сложный пример (фиг. 4.6).


Фейнмановские лекции по физике. Современная наука о природе

Фиг. 4.6. Нагруженный стержень, подпертый с одного конца.


Подопрем один конец стержня (или рейки) длиной 8 м. Посредине рейки поместим груз весом 60 кг, а в 2 м от подпорки – груз весом 100 кг. Сколько надо силы, чтобы удержать рейку за другой конец в равновесии, пренебрегая ее весом? Пусть мы прикрепили блок и перекинули через него веревку, привязав ее к концу рейки. Каков же должен быть вес W, уравновешивающий стержень? Представим, что вес опустился на произвольное расстояние (для простоты пусть это будет 4 см);на сколько тогда поднимутся наши два груза? Середина рейки на 2 см, а второй груз (он лежит на четверти длины рейки) на 1 см. Значит, в согласии с правилом, что сумма весов, умноженных на высоты, не меняется, мы должны написать: вес W на 4 см вниз плюс 60 кг на 2 см вверх плюс 100 кг на 1 см вверх, что после сложения должно дать нуль:

−4W + 2 × 60 + 1 × 100 = 0, W = 55 кг. (4.5)

Выходит, чтобы удержать рейку, хватит 55 кг. Таким же путем можно разработать законы «равновесия» – статику сложных мостовых сооружений и т. д. Такой подход именуют принципом виртуальной (т. е. возможной или воображаемой) работы, потому что для его применения мы обязаны представить себе, что наша система чуть сдвинулась, даже если она в действительности не двигалась или вовсе не способна двигаться. Мы используем небольшие воображаемые движения, чтобы применить принцип сохранения энергии.

§ 3. Кинетическая энергия

Чтобы рассказать о другом виде энергии, рассмотрим маятник (фиг. 4.7). Отведем его в сторону и затем отпустим. Он начнет качаться взад и вперед. Двигаясь от края к середине, он теряет высоту. Куда же девается потенциальная энергия? Когда он опускается до самого низа, энергия тяготения пропадает, однако он вновь взбирается вверх. Выходит, что энергия тяготения должна превращаться в другую форму. Ясно, что способность взбираться наверх остается у маятника благодаря тому, что он движется; значит, в наинизшей точке качания энергия тяготения переходит в другой вид энергии.


Фейнмановские лекции по физике. Современная наука о природе

Фиг. 4.7. Маятник.


Мы должны получить формулу для энергии движения. Вспоминая наши рассуждения о необратимых машинах, мы легко поймем, что, двигаясь мимо наинизшей точки, маятник должен обладать некоторым количеством энергии, которая позволит ему подняться на определенную высоту, и при этом независимо от механизма подъема или пути подъема. Возникает формула, выражающая равноценность обоих видов энергии, подобная той, которую писала мама, подсчитывая кубики. Получается другая форма представления энергии. Легко понять, какой она должна быть. Кинетическая энергия внизу равна весу, умноженному на высоту, на которую этот вес может подняться из-за своей скорости:

к. э. = WH.

Нам нужна формула, предсказывающая высоту подъема по быстроте движения тела. Если мы толкнем что-нибудь с определенной скоростью, скажем, прямо вверх, то это тело достигнет определенной высоты; мы не знаем пока, какова эта высота, но нам ясно, что она зависит от скорости и что она войдет в нужную нам формулу. Значит, чтобы найти формулу для кинетической энергии тела, движущегося со скоростью V, нужно вычислить высоту, до которой она может добраться, и умножить на тяжесть тела. В одной из следующих глав мы убедимся, что получается


Фейнмановские лекции по физике. Современная наука о природе

Конечно, тот факт, что движение обладает энергией, никак не связан с полем тяготения, в котором находится тело. Не важно, откуда явилось движение. Это общая формула для любых скоростей. Кстати, и (4.3) и (4.6) – формулы приближенные; первая становится неправильной на больших высотах (настолько больших, что тяжесть тела ослабляется), а вторая – на больших скоростях (настолько больших, что требуются релятивистские поправки). Однако, когда мы вводим точные формулы для энергии, закон сохранения энергии опять соблюдается.

§ 4. Прочие формы энергии

В таком вот роде можно и дальше показывать существование энергии в разных формах. Отметим, во-первых, упругую энергию. Растягивая пружину, мы должны совершить какую-то работу, ведь растянутая пружина способна поднять груз. После растяжения она получает возможность выполнить работу. Если бы мы теперь составили сумму произведений весов на высоты, то она больше не сошлась бы, и нам пришлось бы в нее что-то вставить, чтобы учесть напряженность пружинки. Упругая энергия – это и есть формула растянутой пружины. Сколько же в ней энергии?

Когда вы отпускаете пружину, то упругая энергия при переходе пружины через точку равновесия обращается в энергию кинетическую; и далее все время совершаются переходы от сжатия и растяжения пружины к кинетической энергии движения (в переходы эти замешиваются еще изменения энергии тяготения, но если это нам мешает, то можно пружину не подвешивать, а положить). И так продолжается до тех пор, пока потери энергии… Постойте! Выходит, мы все время жульничали: то совершали обвес, чтобы рычаг наклонился, то говорили, что машины обратимы, то уверяли, что они будут работать вечно. А машина в конечном счете останавливается. Где же теперь, когда пружина перестала сжиматься-разжиматься, находится энергия? Она перешла в новую форму энергии – тепло.

В пружине или рычаге имеются кристаллы, состоящие из множества атомов; и при сборке частей машины требуется особая точность и тщательность, чтобы в работе машины ни один из атомов не сдвинулся со своего места, не поколебался. Нужно быть очень осторожным. Ведь обычно, когда машина вертится, то и дело происходят какие-то удары, покачивания, вызванные неровностями материала, и атомы начинают дрожать. Так теряются маленькие доли энергии; по мере того как движение замедляется, всё сильнее становятся случайные, неожиданные дрожания атомов вещества машины. Конечно, это все еще кинетическая энергия, но не связанная с видимым движением.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию