Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - читать онлайн книгу. Автор: Малкольм Фрэнк, Пол Рериг, Бен Принг cтр.№ 13

читать книги онлайн бесплатно
 
 

Онлайн книга - Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу | Автор книги - Малкольм Фрэнк , Пол Рериг , Бен Принг

Cтраница 13
читать онлайн книги бесплатно

Сегодня все мы пользуемся плодами автоматизации еще индустриальных времен. Земные блага, дарящие столько удовольствий: машины, телевизоры, компьютеры, кухонное оборудование, одежда, которую носим, авиаперелеты, еда и развлечения – все это мы получаем по соотношению цены и производительности, невообразимой еще несколько поколений назад. В конце концов, взгляните на свой 60-дюймовый телевизор с плоским экраном и высоким разрешением, который по сегодняшним ценам стоит как треть 19-дюймового ТВ марки RCA, который украшал семейное гнездышко ваших родителей.

Все эти товары и услуги – прямой результат автоматизации. И при этом каждое упоминание слова «автоматизация» в 2017 году часто встречается негативно, а иногда даже враждебно. Кажется, многие забыли, что на протяжении всей истории автоматизация давала обществу лишь преимущества. В процессе автоматизации нашей работы и общества, поколение за поколением, произошли три по-настоящему хорошие вещи.

1. Было создано новое изобилие; продажи продуктов и услуг, полученных в результате автоматизации, намного более доступных и высококачественных сегодня, взлетели до небес.

2. С новым изобилием растет и общая занятость, даже если каждое изделие требует меньше трудовых вложений.

3. Общество получает исключительное благо более высоких стандартов жизни, созданных по-новому доступными товарами и услугами.


Каждый раз при появлении новой формы автоматизации ощущаются озабоченность и тревога. В конце концов, мы не всегда сразу можем увидеть новое изобилие, рост общей занятости и чистое общественное благо, но безусловно заметим изначальные потери рабочих мест. Этот процесс автоматизации, сначала проклинаемый, а в результате восхваляемый, повторяется с потрясающим постоянством.

Задумайтесь о пароходе, локомотиве и сборочной линии. С появлением каждой новой технологии заинтересованные круги оказывались под угрозой, а часть бизнеса обычно рушилась. В этом заключалась и история упомянутых выше луддитов. В контексте того момента их аргументы заслуживали внимания. Однако в контексте истории, если мы признаем, что ткацкий станок одел мир, заложил основы мировой торговли, инициировал рост многочисленного среднего класса и запустил разнообразные смежные отрасли, луддиты оказались не правы.

Автоматизация – глубокая и непреодолимая сила. Автоматизация ключевых процессов – главный и первый шаг для вас и вашей организации к глубокому рабочему пониманию новой машины и раскрытию ее потенциала ради будущего процветания.

Это может звучать как громкая, заоблачная теория, но имеет очень практическое применение. Менеджеру, раздумывающему об автоматизации в своей компании, эти аспекты будут полезны. Ведь если кто-то боится автоматизировать какие-то внутренние процессы в компании, то со временем может выйти, что все рабочие места в компании будут поставлены под удар (когда компания станет неконкурентоспособной в цене). Кроме того, работа, которая потенциально может быть расширена при помощи автоматизации, не придет к желаемому виду, и на рынок не выйдут новые предложения смежных вакансий.

Для некоторых принятие новых машин станет болезненным, но этот сдвиг неизбежен. Если мы пройдем этот этап мудро, результат будет положительным как для наших компаний, так и для общества в целом.

Скорость этого перехода

Наш прогноз состоит в том, что ИИ повлияет почти на 100% интеллектуального труда и полностью устранит примерно 12% подобных вакансий. Но ключевой вопрос здесь – «когда?».

ИИ съест нынешние рабочие места «медленным, медленным, внезапным» образом. Какие-то задачи будут постепенно и все больше автоматизироваться и достигнут потенциальной критической точки, где будет фундаментально изменена сама природа деятельности (как точка каннибализации на 50% в модели Forrester). Этот переход будет следовать по схеме принятия технологии, очерченной Биллом Гейтсом: «Мы всегда переоцениваем изменения, которые произойдут в следующие два года, и недооцениваем те, что произойдут в следующие десять».

Следовательно, легко поверить обеим сторонам спора об исчезновении видов работ. Заглянув недалеко вперед (через следующие три года), человек может подумать: «Не может быть, чтобы наш финансовый отдел был замещен автоматами». Хотя, чтобы понять возможности платформ ИИ, стоит заглянуть на пятнадцать лет вперед и подумать: «Не может быть, чтобы к 2030 году у нас было больше пары человек, обрабатывающих клиентские счета».

Ключ к постановке реалистичных временных рамок:

а) во взгляде на работу как на набор задач;

б) в ценности остающихся человеческих единиц.

Глядя на эти две переменные, мы можем начать делать основательные прогнозы, как скоро боты начнут съедать определенные профессии.

Идти ВПЕРЕД во времена перетряски

Завершая разбор этой уничтожающей рабочие места природы новых машин, надо сказать, что намеченные нами перспективы – суть оставшейся части книги. В следующих главах мы исследуем практическое приложение этих динамических сил и то, что они будут значить для вас и вашей организации. В главе 7 мы более глубоко исследуем автоматизацию, рассмотрев конкретные процессы, функции и рабочие обязанности в вашей компании, наиболее близкие к тому, чтобы их забрали новые машины. Прочитав эту главу, можно подумать: «Тамара в бухгалтерии в опасности, если не будет быстро реагировать». В главе 9 мы обозначим профессии, которые находятся в безопасности и будут расширены. В главах 10 и 11 посмотрим на создание совершенно новых вакансий в связи с современным изобилием, процессом изобретений и открытий.

Однако, прежде чем приступить к определению будущего работы, нужно внимательно посмотреть на новые машины, которые станут драйвером всех этих перемен.

Глава 4
Новая машина: Интеллектуальные системы

Возможно, иногда вас удивляет то же, что и нас: «Как Uber всегда удается находить машину, если я в каком-то случайном закоулке в пятистах милях от дома, а затем автоматически списывать деньги с карты, высылать счет и отмечать мой пассажирский рейтинг – и все за секунды?» или «Как я могу смотреть видео на YouTube на мобильном устройстве, двигаясь в поезде со скоростью 130 миль в час?».

Две этих ситуации, два момента «чуда», которые уже стали обыденными, еще несколько лет назад были бы невозможны. Удивительно то, что и Uber, и YouTube, несмотря на то что предлагают совсем не похожие услуги, выполняют свои операции на «машинах» с практически одинаковыми компонентами. Эта новая машина, та, что мы зовем «интеллектуальной системой», быстро становится краеугольным камнем для компаний, конкурирующих в наукоемкой среде. Она в центре Facebook, Instagram, Google, Е-Trade, Betterment и всех прочих сегодняшних цифровых лидеров.

Однако при всей значимости новые машины по-прежнему остаются во многом непонятыми. Многие из нас активно потребляют результаты действия интеллектуальных систем, не останавливаясь, чтобы задуматься, насколько актуальные, персонализированные и отборные возможности создаются и достаются нам.

Вернуться к просмотру книги Перейти к Оглавлению