Чудовища доктора Эйнштейна - читать онлайн книгу. Автор: Крис Импи cтр.№ 53

читать книги онлайн бесплатно
 
 

Онлайн книга - Чудовища доктора Эйнштейна | Автор книги - Крис Импи

Cтраница 53
читать онлайн книги бесплатно

Эти тесты подтверждают общую теорию относительности и ее превосходство над теорией Ньютона. Однако проверка теории относительности там, где пространство плоско, как кукурузные поля Айовы, оставило ощущение легкой неудовлетворенности. Это сродни тест-драйву «Ламборджини» на парковке. Разумеется, он поедет лучше вашего старого «Форда Таурус», но это явное занижение планки. Гораздо лучше промчаться за рулем по горной трассе: вы почувствуете, как резво «Ламборджини» штурмует склоны и вписывается в повороты, а «Таурус» перегреется и съедет на обочину. Астрономы надеются когда-нибудь проверить эту теорию на настоящих черных дырах: излучение обещает быть зрелищным. Из следующего раздела мы узнаем, как спектроскопия аккреционного диска позволила обнаружить сильное гравитационное красное смещение.

По ту сторону железного занавеса

Область вокруг черной дыры – подходящее место для решающей проверки общей теории относительности. Какое расстояние будет максимально близким для наблюдений? Предел устанавливает горизонт событий, через который к нам не проходит никакая информация. Общая теория относительности также описывает несколько важных рубежей вне горизонта событий. Первый – так называемая фотонная сфера, где свет попадает в ловушку и начинает двигаться по круговым орбитам вокруг черной дыры. Поскольку масса отклоняет свет, можно представить массу, загнувшую свет в кольцо. Попади вы туда, фотон, начав путь от вашего затылка, обогнул бы черную дыру по орбите и достиг бы вашего глаза, и вы увидели бы собственный затылок. У неподвижной черной дыры радиус фотонной сферы в полтора раза больше радиуса Шварцшильда [284]. Вращающаяся черная дыра имеет две фотонные сферы и по мере своего вращения утягивает за собой пространство. Внутренняя фотонная сфера движется в направлении вращения, а внешняя – в противоположную сторону. Представьте себе пловца, пытающегося вырваться из водоворота. Для этого нужно плыть против течения – плывя по течению, он лишь приблизит печальную судьбу. Наблюдать фотонную сферу невозможно, поскольку фотоны пойманы в ловушку.

Мы входим в сферу наблюдений, оказавшись у внутреннего края аккреционного диска. Увлекаемые гравитацией к черной дыре, частицы трутся друг о друга, повышая температуру вещества, поэтому аккреционный диск представляет собой плазму, температура которой понижается по мере удаления от центра диска. Внутренний край определяется самой внутренней устойчивой орбитой, радиус которой в три раза больше радиуса Шварцшильда для неподвижной черной дыры и чуть выступает за горизонт событий у черной дыры, быстро вращающейся вокруг своей оси [285]. Частица, оказавшаяся внутри устойчивой орбиты, втягивается в черную дыру и исчезает навсегда. Внутренняя кромка аккреционного диска черной дыры малой массы имеет температуру 10 млн кельвинов, а сверхмассивной – 100 000 кельвинов. Такой горячий газ дает мощное рентгеновское излучение.

Можем ли мы увидеть внутреннюю кромку аккреционного диска? Нет. Угловой размер слишком мал для любого телескопа. У ближней черной дыры – на расстоянии 100 световых лет – внутренняя кромка образует угол 10–9 угловых секунд. Это как если пытаться рассмотреть булавочную головку на поверхности Марса. Ситуация немного лучше в случае со сверхмассивными черными дырами – например, с неактивными, обнаруженными в центре ближних галактик. Они в несколько миллионов раз дальше, но их горизонт событий в миллиард раз больше, поэтому внутренние радиусы их аккреционных дисков видны под углами от 10–7 до 10–6 угловых секунд. Это в несколько сотен раз меньше разрешения даже описанных выше радиоинтерферометров, следовательно, все еще недоступно для наблюдательной астрономии.

У астрономов есть только одна возможность заглянуть за железный занавес – спектроскопия. Газ аккреционного диска почти полностью состоит из ионов водорода и гелия, но две из каждого миллиона частиц являются ионами железа. Область сразу за аккреционным диском – это экстремально горячая корона. Рентгеновские лучи короны облучают несколько более прохладный аккреционный диск, а их энергия вызывает спектральные переходы железа. Железо – редкий элемент, но его спектральные характеристики – четкие и однозначные. Рентгеновский спектр показывает движение газа, потому что приближающаяся к нам часть аккреционного диска имеет голубое смещение, а удаляющаяся от нас – красное. Рентгеновские лучи внутренней части аккреционного диска также подвергаются сильному гравитационному красному смещению, поэтому спектральная линия железа расширяется и сдвигается в область низких энергий (илл. 48). Рентгеновское излучение дает замечательную возможность измерить гравитацию в пределах крохотного горизонта событий [286].

Эти наблюдения стали возможны благодаря запуску рентгеновского спутника ASCA в 1993 г. Впервые рентгеновские лучи внутренней кромки аккреционного диска массивной черной дыры удалось зарегистрировать на следующий год [287]. Гравитационное красное смещение линий рентгеновского спектра уже наблюдалось у десятка черных дыр звездной массы и аналогичного числа сверхмассивных черных дыр. Удивительный феномен в рентгеновском диапазоне, обнаруженный несколькими годами ранее, позволил открыть второе окно наблюдения за областями черных дыр.

Рентгеновское мерцание на краю бездны

В 1980-х гг. рентгеновские спутники начали мониторинг компактных звезд и звездных остатков и обнаружили быстро изменяющиеся источники рентгеновского излучения. Мерцание не было ритмичным, и явление назвали квазипериодическими осцилляциями. Впервые они наблюдались у белых карликов, затем у нейтронных звезд и черных дыр.


Чудовища доктора Эйнштейна

Астрономы не сразу поняли, какие астрофизические процессы лежат за этими изменениями. Временная шкала у разных источников составляла от секунды до всего лишь миллисекунды, а периодичность часто терялась в шуме более хаотических колебаний. У черных дыр наблюдался специфический рисунок нарастания и снижения яркости: сначала 10 секунд для завершения осцилляции, затем через несколько недель или месяцев – ускорение до десятой доли секунды, далее изменения прекращались, и цикл повторялся. Наблюдения и моделирование архетипичной черной дыры Лебедь Х-1 выявили источник колебаний. Это пульсации, вызванные газом, покидающим внутреннюю область аккреционного диска и увлекаемым к горизонту событий. Волнительно наблюдать в реальном времени за предсмертными конвульсиями материи, падающей в черную дыру [288].

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию