Почему небо темное. Как устроена Вселенная - читать онлайн книгу. Автор: Владимир Решетников cтр.№ 7

читать книги онлайн бесплатно
 
 

Онлайн книга - Почему небо темное. Как устроена Вселенная | Автор книги - Владимир Решетников

Cтраница 7
читать онлайн книги бесплатно

Рис. 8. Анри Детуш. «Галилей и дож Леонардо Донато» (XIX век)

О том, что произошло летом 1609 года, пусть расскажет сам Галилей: «…Венецию, где я тогда находился, достигли новости, что синьору графу Маврицию была представлена одним голландцем оптическая труба, в которую удаленные предметы были видны столь совершенно, как будто они были совсем близко. Больше ничего в этом сообщении добавлено не было. Узнав об этом, я вернулся в Падую, где тогда проживал, и начал размышлять над этой задачей. В первую же ночь после моего возвращения я ее решил, и на следующий день изготовил инструмент, о коем и сообщил в Венецию тем же самым друзьям, с которыми предшествующий день я рассуждал о сем деле. Я принялся затем тотчас же за изготовление другого, более совершенного инструмента, который и привез шесть дней спустя в Венецию. Здесь в него с большим удивлением смотрело почти все высшее дворянство этой республики непрерывно в течение больше месяца…». На рис. 8 приведена репродукция картины XIX века, иллюстрирующая слова Галилея. На ней показан один из вечеров августа 1609 года, когда Галилей демонстрировал свою зрительную трубу дожу Венеции.

В конце 1609 года Галилео Галилей начал систематические наблюдения неба в свой телескоп и уже в марте 1610 года он опубликовал знаменитый «Звездный вестник» («Sidereus Nuncius»), суммировавший результаты его первых исследований. На Луне Галилей обнаружил горы, у Юпитера он открыл 4 спутника (тем самым в системе Юпитера он усмотрел подобие Солнечной системы). Сравнивая телескопические изображения звезд и планет, Галилей обнаружил, что они выглядят очень по-разному: звезды остались мерцающими точками, в то время как планеты предстали в виде четко очерченных кружков. Позднее Галилей открыл фазы Венеры, пятна на Солнце, странную форму Сатурна, связанную, как выяснилось позднее, с его знаменитыми кольцами.

Одно из самых известных открытий, описанных в «Звездном вестнике» и имеющих непосредственное отношение к теме этой книги, — Млечный Путь «является не чем иным, как собранием многочисленных звезд, расположенных группами. В какую бы его область ни направить зрительную трубу, сейчас же взгляду представляется громадное множество звезд, многие из которых кажутся достаточно большими и хорошо заметными. Множество же более мелких не поддается исследованию».

8 апреля 1610 года экземпляр книги Галилея попал в руки Иоганна Кеплера, бывшего в то время придворным математиком императора Рудольфа II в Праге. (К сожалению, красиво звучащая должность не приносила Кеплеру особого материального достатка.) А уже к 19 апреля Кеплер завершил «Разговор со звездным вестником, недавно ниспосланным смертным Галилео Галилеем, падуанским математиком» — своего рода развернутую рецензию на книгу Галилея.

В своем «Разговоре» Кеплер абсолютно доверяет тому, что увидел Галилей в свой телескоп: «Может быть, я покажусь слишком смелым, если так легко поверю твоим утверждениям, не подкрепляясь никаким собственным опытом. Но почему же мне не верить ученейшему математику, о правоте которого свидетельствует самый стиль его суждений, который далек от суетности и для стяжения общего признания не будет говорить, что он видел то, чего на самом деле не видел, не колеблясь из любви к истине противоречить распространеннейшим мнениям».

Комментируя открытие Галилеем огромного количества слабых звезд, Кеплер пишет: «Ты, не колеблясь, утверждаешь, что число видимых звезд превышает 10 000. Но чем больше их и чем плотнее они располагаются на небе, тем правильнее моя аргументация против неограниченности мира, приведенная в книге „О новой звезде“… Там доказывается, что населенный людьми уголок мира с Солнцем и планетами занимает особое положение, в силу чего невозможно, чтобы с какой-нибудь неподвижной звезды открывалась такая же картина мира, как с нашей Земли или с Солнца». И далее: «Во сколько же раз будут превосходить по своим видимым размерам Солнце 10 000 малых дисков, слитых воедино? Если это верно и если те Солнца того же рода, что и наше Солнце, то почему бы им всем, взятым вместе, не превосходить по блеску наше Солнце? Как может быть свет, изливаемый всеми далекими Солнцами на открытые пространства, столь слаб, что наше Солнце, стоит лишь его лучам проникнуть в закрытую комнату через отверстие, проколотое кончиком тонкой иглы, по блеску превосходит неподвижные звезды в том виде, в каком мы видим их на почти безграничном удалении за стенами комнаты?»

На основе подобной аргументации Кеплер делает вывод, что многочисленные звезды, открытые Галилеем, гораздо слабее Солнца, иначе их суммарный блеск затмил бы его: «тело нашего Солнца по блеску в не поддающееся оценке число раз превосходит все неподвижные звезды, вместе взятые» и «…наш мир — не просто один из членов стада, содержащего бесконечно много других миров».

Вселенная Кеплера — это вспышка света в окружающем мраке. Она представляет собой сферу неподвижных звезд, в середине которой находится Солнце с вращающимися вокруг него планетами. Эта Вселенная конечна — она окружена со всех сторон темной стеной, которую мы видим в просветах между звездами.

Как видно из предыдущего, Кеплер, по сути, сформулировал фотометрический парадокс (бесконечное множество подобных Солнцу далеких звезд должны затмить Солнце) и предложил его решение — Вселенная ограничена в пространстве и содержит конечное количество звезд.

В XVII столетии был еще один удивительный для науки год. В 1687 году Исаак Ньютон опубликовал «Математические начала натуральной философии», заложившие основу так называемой классической физики и картины мира, просуществовавших до начала XX века. В своих «Началах» Ньютон не затрагивает вопросы крупномасштабного строения мира, ничего не пишет и о звездах. Высказаться на эти темы его подтолкнула переписка с молодым священником Ричардом Бентли в 1692 и 1693 годах.

Преподобный Ричард Бентли (1662–1742), капеллан епископа Ворчестерского, обратился к Ньютону с просьбой ответить на ряд вопросов об устройстве Вселенной. Для такого обращения у Бентли была очень веская причина — в рамках «Бойлевских чтений» ему было поручено прочесть в Лондоне восемь публичных проповедей в защиту христианства. Одной из целей этих проповедей было показать, что подтвержденная трудами Ньютона гелиоцентрическая астрономия не противоречит теологической картине мира. Бентли был хорошим теологом и филологом, но с физикой и математикой знаком был плохо. Поэтому он написал Ньютону — кто как не Ньютон был самым большим авторитетом в вопросах «натурфилософии» в Англии? — и Ньютон ему охотно ответил.

В своих письмах (всего их было четыре) Ньютон рассмотрел случаи конечной и бесконечной Вселенных, в которых действует закон всемирного тяготения. В случае ограниченного объема Вселенной все составляющие ее тела под действием взаимного притяжения рано или поздно должны были бы слиться в «одну гигантскую сферическую массу». Этого нет, следовательно, Вселенная бесконечна.


Почему небо темное. Как устроена Вселенная

Рис. 9. Исаак Ньютон (1643–1727)

В бесконечном пространстве центров конденсации будет бесконечное множество и именно таким образом должны были образоваться Солнце и другие бесчисленные звезды. В бесконечной Вселенной на любую звезду с каждой из сторон действует бесконечная сила, эти силы уравновешивают друг друга и звезда остается в покое. Однако такая Вселенная должна быть неустойчива, так как малейшее нарушение взаимных расстояний между звездами должно привести к тому, что fixae stellae («неподвижные звезды») начнут двигаться. Ньютон был уверен, что звезды не двигаются — это был один из основных наблюдательных фактов астрономии со времен античности, — и поэтому ему пришлось привлечь внешнюю организующую силу — божественную. Как сказал Ньютон Дэвиду Грегори, «непрерывно свершающееся чудо требуется для того, чтобы предотвратить падение Солнца и неподвижных звезд друг на друга под действием гравитации».

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию