Энергия и цивилизация - читать онлайн книгу. Автор: Вацлав Смил cтр.№ 40

читать книги онлайн бесплатно
 
 

Онлайн книга - Энергия и цивилизация | Автор книги - Вацлав Смил

Cтраница 40
читать онлайн книги бесплатно

Чтобы передвинуть египетский обелиск в 327 тонн с того места, где его оставили римляне (Калигула поместил его на центральной линии своего цирка, к югу от нынешнего собора Святого Петра) на 269 метров к востоку, Доменико Фонтана пустил в ход огромные (до 15 метров длиной) деревянные рычаги и блоки. Чтобы поднять обелиск с древнего основания и переместить на новый фундамент, 10 сентября 1586 года он использовал 900 человек и 75 лошадей, которые тянули веревки (Fontana 1590; Hemphill 1990). Весь проект занял тринадцать месяцев, а на поднятие груза ушел один день. После более поздних знаменитых перемещений обелисков один из них стоит на площади Согласия в Париже (перемещен в 1833 году), другой – на берегу Темзы (1878 год), и третий – в Центральном парке Нью-Йорка (с 1881 года; Petroski 2011).

Когда самая тяжелая колонна в мире – 604 тонн красного финского гранита, добытого, чтобы отпраздновать победу России над вторгшимся в страну Наполеоном, – была воздвигнута в Санкт-Петербурге 30 августа 1832 года, французский архитектор Огюст Монферран использовал 2400 человек (1700 из них тянули веревки) и закончил работу за два часа (примечание 4.1). Два важных устройства, обеспечивших необходимые механические преимущества для этих двух операций и позволивших людям успешно завершить многие сложные задачи по перемещению и подъему, – это наклонные насыпи и рычаги, которые появились даже не во времена древних империй, а многими-многими веками ранее. Как иначе строители Стоунхенджа управлялись с камнями весом в 40 тонн?

Примечание 4.1. Подъем Александрийского столпа

Большой кусок красного гранита, который стал Александрийским столпом, был добыт в Виролахти в Финляндии, с помощью катков доставлен на специально построенную баржу, способную перевезти 1100 тонн. Колонна едва не упала в воду при погрузке, но ее все же доставили за 190 км к набережной Невы в Санкт-Петербурге, переместили на подложку из дерева, подняли на 10,5 метра по насыпи и установили на платформе под правильным углом к пьедесталу в центре Дворцовой площади. Леса из толстых досок, поднимавшиеся над памятником, были 47 метров в высоту, веревочные блоки свисали с пяти двойных дубовых балок. Монферран создал модель лесов в масштабе 1 к 12, чтобы плотникам было чем руководствоваться в процессе их постройки (Luknatskii 1936). Подъем сопровождали 60 вертикальных воротов, установленных на лесах в два ряда. Роль храповиков исполняли железные барабаны, закрепленные на деревянной раме, (верхние блоки свисали с деревянных балок); 522 веревки, каждая испытана на подъем 75 килограммов (в три раза больше актуальной нагрузки) были прикреплены к колонне. Общая масса монолита со всеми устройствами составила 757 тонн.

Столп подняли 30 августа 1832 года, эту задачу выполнили 1700 солдат под командованием 75 офицеров, за которыми наблюдали прорабы, координировавшие скорость движения в зависимости от натяжения веревок. Ассистенты Монферрана стояли по углам лесов в компании 100 моряков, которые следили за блоками и веревками, не давали им запутаться. 60 рабочих находились прямо на башне, а плотники, каменщики и другие мастеровые оставались в резерве. Общее количество задействованных людей превысило 2400, и подъем был завершен всего за 105 минут. Достоин упоминания тот факт, что столп встал прямо без какого-либо крепления к пьедесталу: 25,45 м высотой, слегка конический (3,6 м диаметр снизу и 3,13 м на вершине), он держится на месте исключительно благодаря массе.

В этой главе я сначала оценю виды, мощности и ограничения всех традиционных первичных движителей – мускулов человека и животных, ветра и воды – и наряду с ними потребление древесного топлива, большей частью дров и древесного угля, хотя в лишенных лесов регионах в ход шли и солома, и высушенный навоз. После этого я в деталях рассмотрю использование первичных движителей и видов топлива в важнейших сегментах традиционной экономики: приготовление пищи, получение тепла и света, наземный и водный транспорт, строительство, цветная и черная металлургия.

Первичные движители

Одушевленный труд и конверсия кинетической энергии воды и ветра (с помощью парусов и мельниц) были единственными первичными движителями в традиционных обществах до появления паровых машин. Хотя последующее выведение из оборота традиционных первичных движителей было сравнительно быстрым, важность водяных и ветряных мельниц сохранялась (и даже увеличивалась) на протяжении первой половины XIX века, парусники потеряли значение в качестве средства океанского транспорта только после 1880 года, а тягловые животные доминировали даже в наиболее развитых обществах Запада до конца Первой мировой. На ранних стадиях индустриализации резко выросла потребность в человеческом труде, начиная от по-настоящему напряженной добычи угля или производства железа и стали и заканчивая тысячами утомительных задач, и детский труд был широко распространен в Европе и США даже в начале двадцатого века. В 1900 году около 26 % мальчиков 10–15 лет работали, а в сельском хозяйстве были заняты 75 % детей, в основном девочки (Whaples 2005).

Высокие нагрузки и детский труд до сих пор никуда не исчезли в большей части сельских районов Африки к югу от Сахары, а также в беднейших районах Азии. Африканские женщины все так же таскают тяжелые вязанки хвороста, а в Индии женщины ломают камень маленькими молотками. В Индии, Пакистане и Бангладеш мужчины разбирают старые суда на горячих пляжах (Rousmaniere and Raj 2007), а в Китае крестьяне добывают уголь в небольших деревенских шахтах. Миллионы людей все еще подвергаются разным формам принуждения или находятся в прямом рабстве, служат предметом торговли (International Labour Organization 2015). Сохраняющаяся зависимость от человеческого труда (в том числе в нечеловеческих условиях) является одной из самых ярких меток, определяющих различие между богатыми и бедными странами. Однако даже на Западе тяжелый ручной труд (в подземных угольных разрезах, металлургии, лесной отрасли, рыболовстве) существовал еще в 1960-х годах, а использование одушевленных первичных движителей не только вопрос истории: это одна из тех давно установленных опор, на которых покоится наше нынешнее преуспевание.

Рассказ о первичных движителях доиндустриальной эпохи будет неполным без упоминания об изобретении (в Средние века), распространении и исторической важности пороха. Священный ужас перед громом и молнией можно обнаружить в любой древней высокой культуре. Желание превзойти разрушительную силу этих явлений можно найти во многих повествованиях и сказках (Lindsay 1975). Но тысячелетиями людям была доступна только бледная имитация: прикрепить горючий материал к головкам стрел или выстрелить чем-нибудь пылающим из катапульты. Для создания горючих веществ использовались сера, нефть, битум и негашеная известь. Но только изобретение пороха позволило скомбинировать поступательную силу с взрывчатой и воспламеняющей мощностью.

Одушевленная мощность

Одушевленная энергия оставалась самым важным первичным движителем большую часть истории человечества, до середины XX века. Ее ограниченность, определенная метаболическими требованиями и механическими свойствами тел людей и животных, сдерживала развитие доиндустриальных цивилизаций. Общества, получавшие энергию почти исключительно (как в случае с древней Месопотамией и Египтом, с парусными кораблями в виде единственного исключения) или большей частью от одушевленных источников, – средневековая Европа может служить отличным примером, силу ветра и воды там использовали только для решения ограниченных задач, а в сельском Китае все обстояло так еще два поколения назад, – не могли обеспечить продовольственную безопасность и материальное процветание для большинства своих членов.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию