Как работает мозг - читать онлайн книгу. Автор: Стивен Пинкер cтр.№ 48

читать книги онлайн бесплатно
 
 

Онлайн книга - Как работает мозг | Автор книги - Стивен Пинкер

Cтраница 48
читать онлайн книги бесплатно

В рамках ассоциационизма и его реализации в форме коннектоплаз-мы то, как представлен объект (а именно в виде совокупности характеристик), автоматически заставляет систему делать определенные обобщения (если только она не была научена избегать подобного обобщения, намеренно предъявляя примеры обратного). Альтернатива, к которой я пытаюсь подвести, – это то, что человек может мысленно представить в символической форме виды объектов, причем используемые символы могут иметь отношение к целому ряду систем правил, которые мы все время держим в голове. (В теории искусственного интеллекта этот метод называется «обобщение, основанное на объяснении», а коннекционистские модели – это образец метода, называемого «обобщение, основанное на сходстве».) Наши системы правил выражают знание в форме композиционных, выраженных количественно рекурсивных суждений, и совокупности этих суждений смыкаются, образуя модули или интуитивные теории, касающиеся конкретных областей человеческого опыта: таких, как родство, интуитивная наука, интуитивная психология, числа, законы и язык. Некоторые из этих областей более подробно освещаются в главе 5 [134].

Что толку в четких категориях и системах правил? В социальном мире они могут послужить для разрешения спора между враждующими сторонами, каждая из которых ссылается на нечеткую границу категории: одна сторона заявляет, что тот или иной объект входит в категорию, а другая – что не входит. Обряды посвящения, достижение совершеннолетия, выдача дипломов, лицензий и других юридических документов – все эти события проводят четкие линии, благодаря которым каждый член общества может точно знать статус любого другого его члена. Подобным образом правила, не допускающие отступлений, являются хорошей защитой против тактики поэтапных мероприятий, когда кто-то пытается, пользуясь нечеткостью категории, постепенно отвоевать «территорию», выигрывая одно спорное дело за другим.

Правила и абстрактные категории помогают разобраться и в природе вещей. Обходя вопрос сходства, они позволяют нам проникнуть под внешний слой явлений и выяснить скрытые закономерности, в соответствии с которыми функционирует окружающий нас мир. А поскольку эти закономерности в определенном смысле слова цифровые, они придают репрезентациям точность и стабильность. Если сделать копию с аналоговой записи на магнитной пленке, а потом с копии сделать еще одну копию и так далее, качество записи будет ухудшаться с каждым «поколением». Но если сделать такую же цепочку копий в цифровом формате, качество последней будет нисколько не хуже первой. Подобным образом четкие символические репрезентации позволяют составлять логические цепочки, в которых символы дословно копируются в каждую из последующих мыслей, образуя то, что в логике называют термином «сорит» [135]:


Все во́роны – врановые.

Все врановые – птицы.

Все птицы – животные.

Всем животным нужен кислород.

Сорит позволяет мыслителю уверенно делать выводы, несмотря на ограниченный опыт. Так, мыслитель может сделать вывод, что воронам нужен кислород, даже если никто никогда не пытался лишить ворона кислорода и посмотреть, что произойдет. Мыслитель может прийти к этому выводу, даже если он никогда не наблюдал эксперимента, в котором какое бы то ни было животное было лишено кислорода, а только слышал об этом от заслуживающего доверия специалиста. Однако если каждый логический шаг в этом рассуждении будет нечетким, или вероятностным, или осложненным частными характеристиками представителей категории предыдущего логического шага, коэффициент ухудшения будет постепенно расти. Последнее утверждение будет таким же зашумленным, как энная пиратская копия видеокассеты или последняя произнесенная шепотом фраза в игре «сломанный телефон». Представители всех цивилизаций могут выстраивать длинные цепочки рассуждений из звеньев, истинность которых они не наблюдали непосредственно. Философы неоднократно указывали на то, что именно эта способность сделала возможным существование науки [136].

* * *

Как и многие другие проблемные вопросы, связанные с мышлением, полемику по поводу коннекционизма нередко сводят к полемике между врожденностью и обучением. И, как всегда в таких случаях, это затрудняет способность четко мыслить. Несомненно, обучение играет огромную роль в моделировании коннекционных сетей. Часто разработчик сетей, вынужденный вернуться к чертежной доске из-за проблем, о которых я говорил выше, решает воспользоваться способностью сети со скрытыми уровнями запоминать совокупности входов и выходов и распространять их на новые подобные им данные. Иногда можно даже заставить типовую сеть со скрытыми уровнями делать то, что вам нужно, предварительно заучив ее «до смерти». Тем не менее обучение в авральном режиме само по себе не может быть спасением для коннектоплазмы. И не потому, что у сетей слишком мало «врожденной» структуры и слишком много информации на входе из окружения, а потому что у грубой коннектоплазмы так мало мощности, что иногда приходится создавать сети, используя самую худшую комбинацию: слишком малое количество врожденной структуры в сочетании со слишком большим количеством информации на входе из окружения.

Так, Хинтон разработал трехуровневую сеть для вычисления родственных отношений. (По его замыслу, она должна была служить примером того, как работают сети, однако другие коннекционисты восприняли ее как реальную психологическую теорию.) Уровень ввода включал в себя узлы, соответствующие имени, и узлы, соответствующие типу родственных отношений, например, «Колин» и «мать». Уровень вывода включал в себя узлы, соответствующие имени человека, который находится в таких отношениях с заданным человеком, например, «Виктория». Поскольку узлы и связи составляют врожденную структуру сети, а усваивать в процессе обучения ей приходится только веса связей, эта сеть, если ее воспринимать буквально, соответствует врожденному модулю мозга, предназначенному для выдачи ответов на вопросы о том, кто состоит с указанным человеком в родственном отношении указанного типа. Эта система не пригодна для анализа родственных отношений в общем, потому что знания в ней как бы размазаны по всем весам связей, соединяющим уровень вопросов с уровнем ответов, а не хранятся в базе данных, к которой могут иметь доступ разнообразные процессы поиска информации. Следовательно, это знание окажется бесполезным, если хотя бы немного изменить вопрос: например, спросить, в каком родственном отношении состоят между собой два человека, или запросить имена членов семьи человека и родственные отношения, в которых он с ними состоит. В этом смысле модель имеет слишком большой процент врожденной структуры; она создана специально для конкретного типа вопросов [137].

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию