Биология веры. Как сила убеждений может изменить ваше тело и разум - читать онлайн книгу. Автор: Брюс Липтон cтр.№ 23

читать книги онлайн бесплатно
 
 

Онлайн книга - Биология веры. Как сила убеждений может изменить ваше тело и разум | Автор книги - Брюс Липтон

Cтраница 23
читать онлайн книги бесплатно


Биология веры. Как сила убеждений может изменить ваше тело и разум

Электронная микрофотография мембраны человеческой клетки. Чередование темного, светлого и еще одного темного слоев связано с ориентацией фосфолипидных молекул мембраны. Светлый средний слой (эквивалент масла в нашем бутерброде) соответствует гидрофобной области, сформированной «хвостами» фосфолипидов. Темные слои сверху и снизу липидной области (эквиваленты кусков хлеба) соответствуют фосфатным «головкам», тяготеющим к воде.


Но вернемся к нашему бутерброду. Фосфолипидные молекулы мембраны своей формой напоминают круглый леденец на палочке – точнее, на двух палочках (см. рисунок на стр. 109). Круглая часть «леденца» полярная и электрически заряжена, она соответствует хлебу в нашем бутерброде. Два «хвоста» у каждой из молекул неполярны и соответствуют в нашей модели слою масла. Из-за своей неполярности «масляный» слой мембраны не позволяет положительно или отрицательно заряженным атомам и молекулам проходить сквозь нее. По существу, этот липидный внутренний слой является электроизолятором – что как нельзя более уместно в мембране, предназначенной для ограждения клетки от напора множества окружающих ее молекул.

Но если бы мембрана была простым эквивалентом бутерброда из двух кусков хлеба с маслом, клетка не смогла бы выжить. Большинство необходимых ей питательных веществ представляют собой полярные, электрически заряженные молекулы, неспособные проникнуть сквозь сплошной неполярный липидный барьер. Точно так же клетка не смогла бы исторгнуть наружу отработанные шлаки – они ведь тоже поляризованы.

Интегральные мембранные белки

Поистине замечательной составляющей мембраны являются оливки нашего бутерброда. Это белки, которые позволяют питательным веществам, шлакам и другим формам «информации» переноситься сквозь мембрану. При этом белковые «оливки» пропускают в клетку не просто молекулярный мусор, а только те молекулы, которые необходимы для бесперебойного функционирования цитоплазмы. Белки, выполняющие эту функцию, называются интегральными мембранными белками (ИМБ). Они встраиваются в «масляный» слой мембраны точно так же, как оливки на моей иллюстрации.

Как же удается ИМБ внедриться в «масло»? Вспомните, что белки представляют собой линейную цепочку связанных друг с другом остатков аминокислот. Из двадцати различных аминокислот одни представляют собой тяготеющие к воде (гидрофильные) полярные молекулы, а другие – гидрофобные, неполярные молекулы. Та область белковой цепочки, которая составлена из гидрофобных аминокислот, стремится достичь устойчивости в окружении, тяготеющем к жирам, – каким является, например, липидная сердцевина мембраны (см. стрелку на рисунке ниже). Именно таким образом гидрофобные части белка встраиваются во внутренний слой мембраны. Из-за того, что некоторые области белковой цепочки состоят из полярных аминокислотных остатков, а другие – из неполярных, белковая молекула изгибается внутри и снаружи нашего «бутерброда».


Биология веры. Как сила убеждений может изменить ваше тело и разум

Существует масса разновидностей и наименований ИМБ, но все они могут быть подразделены на две функциональные группы: белки-рецепторы и белки-эффекторы. ИМБ-рецепторы – это органы чувств клетки, эквивалент наших глаз, ушей, носа, вкусовых луковиц и т. д. Рецепторы действуют как молекулярные «наноантенны», настроенные на восприятие определенных сигналов внешнего окружения. Часть этих рецепторов входит внутрь клетки для отслеживания состояния ее внутренней среды, а другие выведены наружу для улавливания сигналов извне.

Как и все прочие белки, о строении которых мы говорили выше, рецепторы имеют активную и неактивную конформацию и переходят от одной к другой, когда меняется их электрический заряд. Когда белок-рецептор связывается с сигналом внешней среды, возникающее в результате перераспределение электрического заряда заставляет белковую цепочку свернуться по-новому, и белок принимает «активную» конформацию. У клетки имеются нужным образом настроенные белки-рецепторы для всех внешних сигналов, которые необходимо улавливать.

Некоторые рецепторы реагируют на сигналы физического характера. Один из таких примеров – эстрогенный рецептор, устройство которого в точности соответствует конфигурации и заряду молекулы белка эстрогена. Когда рядом оказывается молекула эстрогена, рецептор надежно сцепляется с ней, подходя как ключ к замку. Как только это происходит, электрический заряд рецептора перераспределяется, и белок переключается в свою активную конформацию. Аналогичным образом, гистаминные рецепторы по своей конфигурации соответствуют молекулам гистамина, инсулиновые рецепторы – молекулам инсулина и т. д.

«Антенны» рецепторов способны также улавливать колебания различных энергетических полей – света, звука и радиоволн. При этом они вибрируют наподобие ножек камертона, и если энергетические колебания во внешней среде оказываются в резонансе с антенной рецептора, то в нем происходит перераспределение заряда и изменение конфигурации. Я остановлюсь на этом более подробно в следующей главе, а сейчас хочу только подчеркнуть, что поскольку белки-рецепторы могут воспринимать энергетические поля, то нам необходимо отказаться от представления о влиянии на физиологические процессы в клетке только молекул каких-то веществ. Биологическое поведение может быть обусловлено незримыми силами, например мыслями, не в меньшей степени, чем химическими молекулами, например пенициллина. Данный факт подводит научное основание для нефармацевтической, энергетической медицины.

Белки-рецепторы – штука замечательная, но непосредственно они на поведение клетки не влияют. Проинформированная рецепторами о внешних сигналах, клетка должна еще предпринять адекватные ответные действия для поддержания своей жизнедеятельности. Это задача белков-эффекторов. Тандем рецепторов и эффекторов представляет собой механизм типа «раздражение – отклик», наподобие рефлекторной реакции во время медосмотра. Когда доктор ударяет вас по колену молоточком, сенсорный нерв получает сигнал и тут же передает информацию моторному нерву, который и заставляет ногу вздрагивать. По своим функциям рецепторы мембраны эквивалентны сенсорным нервам, а белки-эффекторы – моторным нервам, непосредственно вызывающим действие. В целом комплекс рецептор-эффектор действует как коммутатор, переводя сигналы из окружения клетки в ее поведение.

Значение ИМБ ученые осознали только за последние двадцать лет. Оно оказалось настолько велико, что изучение их функционирования превратилось в отдельное научное направление под названием «сигнальная трансдукция». Исследователи сигнальной трансдукции заняты тем, что пытаются классифицировать сотни сложнейших информационных путей, лежащих между восприятием мембраной сигналов окружающей среды и активацией белков, отвечающих за поведение клетки. Изучение трансдукции выводит клеточную мембрану на авансцену – точно так же, как эпигенетика устанавливает особую роль хромосомных белков.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию