Большая история - читать онлайн книгу. Автор: Дэвид Кристиан cтр.№ 32

читать книги онлайн бесплатно
 
 

Онлайн книга - Большая история | Автор книги - Дэвид Кристиан

Cтраница 32
читать онлайн книги бесплатно

Увеличение количества кислорода повергло живые организмы в глубокий шок, потому что для большинства из них кислород был ядом. Таким образом, рост его уровня вызвал, по выражению биолога Линн Маргулис, «кислородный холокост». Многие организмы из числа прокариот исчезли, а те, что выжили, удалились в защищенные среды бедных кислородом глубоких слоев океанов или даже горных пород.

Рост содержания кислорода сбил работу термостатов Земли, потому что на тот момент не было механизмов, которые могли бы поглощать его избыток, и возникла угроза, что накопление этого газа выйдет из-под контроля. Свободный кислород разлагал атмосферный метан, один из самых мощных парниковых газов, а фотосинтезирующие цианобактерии тем временем поглощали огромные количества другого важного парникового газа – углекислого. Поскольку содержание кислорода росло, а парниковых газов – падало, в начале протерозойского эона планета замерзла, и впервые образовалась Земля-снежок (таких эпизодов было несколько). Ледники распространились от полюсов к экватору, Земля побелела и в таком виде отражала больше солнечного света, благодаря чему охлаждалась еще сильнее – запустился страшный цикл положительной обратной связи. В конце концов большинство океанов и континентов оказались покрыты льдом. Макганьенское (Гуронское) оледенение длилось 100 млн лет, начавшись около 2,35 и закончившись около 2,22 млрд лет назад.

Это была почти неминуемая гибель. Организмы, для которых кислород был ядовит, исчезли или спрятались глубоко в океанах. Но даже те, что могли его вынести, страдали в мире, где ледники покрыли и сушу и воду, не пропуская необходимый для фотосинтеза солнечный свет. Жизнь повисла на волоске, большинство ее форм удалились под лед и сгрудились у горячего очага глубоководных вулканов.

Но Земля не пошла по пути Марса и не стала слишком холодной для жизни. Этого не случилось благодаря геологическому термостату, основанному на тектонике плит, теперь с дополнениями в виде новых биологических механизмов, связанных с деятельностью фотосинтезирующих организмов. Ледники приостановили фотосинтез и урезали выработку кислорода. Тем временем глубоководные вулканы под ними продолжали накачивать в океаны углекислый и другие парниковые газы. Те стали скапливаться подо льдом, пока в конце концов не прорвались через него и поверхность Земли снова не нагрелась. Уровень кислорода в атмосфере упал до 1 или 2 %, и последовал длительный период, почти миллиард лет, когда он оставался низким, а климат – теплым. По-видимому, произошла перенастройка древних термостатов Земли, чтобы они могли справляться со значительным уровнем атмосферного кислорода, который вырабатывали цианобактерии.

Спасение в эукариотах

Надолго ли хватило бы таких мер? Ведь под действием подобных механизмов условия в биосфере должны были бы опасно колебаться от экстремальной жары к экстремальному холоду и обратно. Если так, почему же климат оставался относительно стабильным в течение миллиарда лет (2–1 млрд лет назад)? Теперь на помощь пришла биология: она создала новые типы организмов, способных поддерживать термостаты Земли, высасывая из воздуха кислород. Эти существа, первые эукариотические клетки, не только помогли стабилизировать глобальную температуру, – с них началась биологическая революция, которая привела к появлению крупных организмов, таких как мы с вами.

До сих пор все живые организмы были одноклеточными прокариотами из домена архей или бактерий. Появление третьего домена живых существ, эукариот, важно для нас, потому что все крупные организмы, включая нас самих, состоят из эукариотических клеток. Это были первые клетки, способные систематически использовать кислород, эксплуатируя его мощную химическую энергию в процессе, который называется респирацией, – мы делаем то же самое, когда дышим. Дыхание обратно фотосинтезу и на самом деле представляет собой способ освобождать солнечную энергию, захваченную и хранимую в клетках в результате фотосинтеза. При фотосинтезе энергия солнечного света используется, чтобы превратить углекислый газ и воду в углеводы, где она запасается, а кислород при этом остается побочным продуктом. При дыхании же с помощью химической энергии кислорода энергию, запасенную в углеводах, удается из них стащить, а в качестве отходов остаются углекислый газ и вода. Общая формула дыхания такова: CH2O (углеводы) + O2 → CO2 + H2O + энергия.

Как и фотосинтез, дыхание эукариот можно считать энергетической золотой жилой, потому что с его помощью эти новые организмы получили доступ к гигантской химической энергии кислорода, но в малых, мягких дозах, которые не рвали их на части. Дыхание дает энергию огня без его разрушительности. Используя кислород с умом, с помощью дыхания из органических молекул можно выделить по крайней мере в 10 раз больше энергии, чем старыми способами, когда пищевые молекулы расщепляются без кислорода [90]. Получая больше энергии для метаболизма, эукариоты могли увеличить уровень первичного производства – производства живых организмов – в любое число раз от 10 до 1000 [91].

Генетические данные говорят о том, что первые эукариоты появились около 1,8 млрд лет назад [92]. Они размножались, поглощая все больше кислорода, и выделяли в атмосферу углекислый газ в качестве побочного продукта. Здесь мы видим зарождение нового планетарного термостата с биологическим управлением. Эукариоты стали удалять бóльшую часть атмосферного кислорода, выделенного цианобактериями. Этим можно объяснить, почему климат на протяжении протерозоя был относительно стабильным – на самом деле настолько, что некоторые палеонтологи называют период от 2 до 1 млрд лет назад «скучным миллиардом».

Все клетки делятся на эукариотические и прокариотические, и современные биологи считают, что разница между ними – одно из самых фундаментальных явлений в биологии. Эукариотические клетки гораздо крупнее большинства прокариотических. Они бывают в 10 или в 100 раз шире, так что их общий объем может быть больше во много тысяч раз. У эукариот мембраны возникают не только вокруг клеток, но и внутри их, образуя отделы, где могут происходить разные процессы, как в комнатах дома. Это позволяет ввести специализацию, внутреннее разделение труда, которое у прокариот было невозможно. Один из таких отделов, ядро, защищает генетический материал всех эукариот. На самом деле слово «эукариота» происходит из греческого и означает «оболочка» или «зернышко». Защищенный контейнер ядра сделал ДНК эукариот в целом более стабильной, чем у прокариот. Ее также стало возможно хранить в бóльших количествах и проще копировать, поэтому эукариоты в основном могут забавляться бóльшим количеством генетических игрушек. В результате их развитие в конце концов оказалось еще более ярким, чем у прокариот. Кроме того, у эукариот много внутренних органелл, своеобразных упрощенных версий сердца, печени и мозга животных. Самые важные из них – митохондрии, с помощью которых некоторые эукариоты получают доступ к изобильной энергии кислорода, и хлоропласты, при помощи которых другие эукариоты получают энергию солнечного света в процессе фотосинтеза.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию