Складки на ткани пространства-времени - читать онлайн книгу. Автор: Говерт Шиллинг cтр.№ 70

читать книги онлайн бесплатно
 
 

Онлайн книга - Складки на ткани пространства-времени | Автор книги - Говерт Шиллинг

Cтраница 70
читать онлайн книги бесплатно

В конце 1960-х гг. в данных американских разведывательных спутников Vela были обнаружены необъяснимые выбросы высокоэнергетического рентгеновского излучения. Только через 10 лет астрономы убедились в космическом происхождении этих коротких вспышек. Прошло еще около десятилетия, и в апреле 1991 г. НАСА вывело на орбиту гамма-обсерваторию Комптон. Одной из ее задач было собрать как можно больше данных о загадочных космических импульсах и узнать, что они из себя представляют. (Космическое высокоэнергетическое рентгеновское излучение невозможно наблюдать на Земле, поскольку, к счастью, эта смертельная радиация поглощается атмосферой нашей планеты.)

Раскрыть тайну гамма-всплесков оказалось гораздо труднее, чем предполагалось. Как и следовало ожидать, детектор обсерватории Комптон «Инструмент для исследования вспышечных и транзиентных событий» (Burst and Transient Source Experiment, BATSE) за несколько лет зарегистрировал много сотен всплесков, но определить их положение в небе с высокой точностью, не говоря уже о дистанции до них, оказалось невозможно. Кроме того, короткие вспышки – некоторые продолжительностью в малую долю секунды – происходили где угодно, без какой-либо системы. По их распределению нельзя было судить, что это – относительно слабые источники недалеко от нас (столкновения астероидов или взрывы на поверхности ближних звезд) или исключительно мощные события в далеких галактиках.

Все изменилось с запуском итало-голландского спутника BeppoSAX в апреле 1996 г. Кроме измерителя гамма-излучения, маленький спутник был оборудован рентгеновскими телескопами. Замысел ученых состоял в следующем: любой взрыв в космосе сопровождается чрезвычайно кратким выбросом высокоэнергетического гамма-излучения, но рентгеновские лучи более низких энергий, возможно, излучаются дольше. Более того, рентгеновский телескоп может гораздо точнее нацелиться на точку в небе, где происходит всплеск. Если информацию о нем достаточно быстро передать астрономам на Земле, то, вероятно, удастся найти его «послесвечение» в радиодиапазоне или даже оптическое проявление.

Поэтому, узнав, что BeppoSAX зарегистрировал всплеск, Пауль Гроот и Титус Галама должны были действовать максимально быстро. Официально они не имели права использовать информацию ни для чего, кроме радионаблюдений. Более того, британско-голландский телескоп Уильяма Гершеля, оптический инструмент, той ночью должен был выполнять другие наблюдения. Гроот и Галама не смогли связаться со своим научным руководителем Яном ван Парадейсом, и Гроот в конце концов решил нарушить правила. Он позвонил Джону Телтингу на Ла-Пальму и попросил сфотографировать область в северо-западной части Ориона, указанную BeppoSAX.

Вскоре оптическое проявление было обнаружено. Стало очевидно, что гамма-всплеск произошел в очень далекой галактике, в миллиардах световых лет. Это означало, что выделенная энергия взрыва колоссальна – гамма-всплески являются одними из самых высокоэнергетических событий, наблюдаемых во Вселенной. Следствием революционного открытия стало появление нового научного направления – астрофизики высоких энергий. Особое значение в нем приобрело безотлагательное дополняющее наблюдение эпизодических и краткосрочных космических феноменов.

Быстрый отклик уже стал в астрономии обыденностью, и во многих случаях он полностью автоматизирован. Через считаные минуты после того, как гамма- или рентгеновский спутник наблюдает интересное явление, похожее на всплеск, маленькие наземные роботы-телескопы начинают фотографировать подозрительную область неба в поисках видимого проявления. Более крупные телескопы обычно не способны отреагировать настолько оперативно, но и они иногда прерывают текущие программы наблюдения, чтобы помочь найти «виновника».

Сигналы гравитационных волн не исключение. 17 сентября 2015 г. VST – Обзорный телескоп комплекса европейского «Очень большого телескопа» на Сьерро-Паранал в северной части Чили – начал обшаривать южное небо в поисках оптического проявления гравитационно-волнового сигнала, зарегистрированного LIGO тремя днями ранее. Как описывалось в главе 11, автоматическая система оповещения еще не действовала, но пресс-секретари LIGO и Virgo Габриэла Гонсалес и Фульвио Риччи сообщили астрономам, куда смотреть, подобно тому как Пауль Гроот и Титус Галама указали своему коллеге на Ла-Пальме, где искать возможное оптическое проявление гамма-всплеска [107].

Наряду с островом Ла-Пальма из группы Канарских островов север Чили – одно из лучших мест в мире для оптической астрономии. Сьерро-Паранал – это отдаленная бесплодная гора в составе чилийской Береговой Кордильеры примерно в 130 км к югу от портового города Антофагаста. Когда я впервые побывал в этой обсерватории в 1998 г., добраться туда можно было только по разбитой гравийной дороге, протянувшейся на 80 км через потусторонний марсианский ландшафт. С тех пор дорогу замостили камнем, но пейзаж остался прежним [108]. Там снимались финальные сцены фильма 2008 г. о Джеймсе Бонде «Квант милосердия».

В Паранале находится одна из самых продуктивных наземных оптических обсерваторий в мире – «Очень большой телескоп» (Very Large Telescope, VLT). Построенный Европейской южной обсерваторией в 1990-е гг., он состоит из четырех одинаковых 8,2-метровых телескопов. Все они оснащены большим количеством чувствительных камер и спектрографов. Рядом с четырьмя гигантами установлен 2,6-метровый телескоп, обслуживающий программу наблюдения VLT. Этот Обзорный телескоп VLT, завершенный в 2011 г., имеет намного большее поле зрения. Его огромная (268 Мп) камера за несколько минут находит очень бледные звезды в больших полосах обзора. Это прекрасный инструмент для поиска возможного оптического проявления GW150914.

К сожалению, поиск оказался безрезультатным, как и попытки других обсерваторий по всему миру. Может быть, смотреть действительно было не на что. В конце концов, какого оптического сигнала можно ждать от столкновения двух ЧД? В то же время неудача может объясняться совершенно иной причиной. Никто точно не знал, с какой стороны пришли волны Эйнштейна. Иными словами, зона поиска охватывала слишком большую часть неба. Тем не менее все считают дополняющие наблюдения очень важными для обнаружения электромагнитных проявлений в оптическом, инфракрасном, ультрафиолетовом, миллиметровом, рентгеновском, гамма- или радиодиапазонах. Любое электромагнитное излучение, вызванное событием-прародителем гравитационных волн, может принести ценную дополнительную информацию.

Почему необходим поиск электромагнитного проявления? Поясню на аналогии. Представьте, что вы врач-отоларинголог и пришли на футбольный стадион. Во время затишья в матче вы слышите, как кто-то чихает. Звук очень необычный, и поскольку вы настоящий профессионал, то хотите во всем разобраться. Вы уловили, что чихали где-то справа от вас, но определить, кто именно, только по слуху невозможно. Исходя из громкости звука, можно сделать лишь самый общий вывод о расстоянии, на котором находился его источник. У вас нет шанса обнаружить чихавшего – это мог быть кто угодно.

Вернуться к просмотру книги Перейти к Оглавлению