Искра жизни. Электричество в теле человека - читать онлайн книгу. Автор: Фрэнсис Эшкрофт cтр.№ 12

читать книги онлайн бесплатно
 
 

Онлайн книга - Искра жизни. Электричество в теле человека | Автор книги - Фрэнсис Эшкрофт

Cтраница 12
читать онлайн книги бесплатно

Поддержание градиентов концентрации ионов требует больших затрат энергии, поскольку электричество не бывает дешевым, даже когда оно генерируется в наших организмах. Только представьте себе, что около трети вдыхаемого нами кислорода и половины потребляемой пищи идет на создание градиентов концентрации ионов на клеточных мембранах. Один лишь мозг использует около 10 % вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток. Ничего не поделаешь – умственная деятельность очень энергоемка.

Замечательные физиологические жидкости

Почему наши клетки наполняются именно ионами калия, не совсем понятно. Проще всего предположить, что изначально клетки развивались в растворе с высоким содержанием калия. Если им ничто не мешает, липиды самопроизвольно образуют липосомы – крошечные наполненные жидкостью сферы, окруженные оболочкой из фосфолипидов. Не исключено, что такие липидные пленки представляли собой прототип мембран и липосомы, которые появлялись в результате их образования, были предшественниками настоящих клеток. Предположительно более трех с половиной миллиардов лет назад липосомы захватили самовоспроизводящиеся молекулы, такие как РНК или ДНК {5}, и превратились в первые клетки.

Жидкость внутри этих первых примитивных клеток неизбежно должна была иметь такой же состав, как и жидкость, которая их окружала. Таким образом, высокая внутренняя концентрация калия, характерная для всех клеток, – от простейших бактерий до самых сложных организмов – может отражать состав «первичного бульона». Загадка, однако, остается. Где находились эти древние воды, насыщенные калием? Одна из современных популярных теорий предполагает, что жизнь зародилась в «черных курильщиках» на дне океана – гидротермальных источниках, которые выбрасывают богатую минералами перегретую воду. С точки зрения физиолога, это маловероятно, поскольку в докембрийских морях, как и в нынешних, всегда было много натрия. Лично я придерживаюсь точки зрения Чарльза Дарвина, который считал, что жизнь зародилась миллиарды лет назад в «небольшом теплом пруду». Неглубокие заводи, где скапливались молекулы органических веществ и куда поступали ионы калия из окружающих горных или глинистых пород, вполне могли быть местом рождения первых клеток.

В какой-то момент очень далекого прошлого разрозненные клетки обнаружили, что совместная жизнь дает преимущества в естественном отборе, и в результате появились многоклеточные организмы. Поскольку внеклеточный раствор, в котором находятся наши клетки, богат натрием, есть вероятность, что первые многоклеточные организмы зародились в море, представляющем собою по большому счету раствор хлорида натрия (поваренной соли). Очень заманчиво думать, что внутриклеточные растворы и внеклеточные жидкости несут отпечаток нашей истории и говорят о том, где именно зародилась жизнь.

Пограничный контроль

Наличие клеточной мембраны дает множество преимуществ. Молекулы больше не рассеиваются случайным образом, а удерживаются внутри клетки и, что более важно, взаимодействуют друг с другом. Клетки могут становиться специализированными и выполнять разные функции, например образовывать мышечную ткань, печень и нервные волокна. Подобно крепостной стене средневекового города мембрана защищает клетку от токсинов в ближайшем окружении и ограничивает поступление и выделение различных веществ, поскольку липиды, из которых она выстроена, непроницаемы для большинства субстанций. В результате появляется необходимость в строго охраняемых воротах, которые впускают в клетку жизненно важные питательные вещества и выпускают из нее отходы жизнедеятельности.

Электрохимическая битва за калий

В состоянии покоя на мембране всех клеток существует разность потенциалов – внутренний потенциал обычно на 60–90 мВ более отрицателен, чем наружный. Потенциал покоя возникает в результате противоборства концентрационного и электрического градиентов на клеточной мембране, которые воздействуют на ионы калия.

В состоянии покоя многие калиевые каналы в клеточной мембране открыты. Поскольку концентрация ионов калия внутри клетки выше, чем снаружи, эти ионы уходят из клетки, понижая градиент концентрации, а в результате того, что ионы калия заряжены положительно, их исход приводит к потере положительного заряда. Иначе говоря, внутри клетки начинает накапливаться отрицательный заряд. В какой-то момент внутриклеточный отрицательный заряд начинает препятствовать выходу ионов калия. Он притягивает ионы калия и останавливает их утечку. Мембранный потенциал, при котором химическая сила, выталкивающая ионы калия из клетки, и электрическая сила, удерживающая ионы калия, уравновешиваются, называют равновесным потенциалом.

Если бы мембрана была проницаема только для ионов калия, то мембранный потенциал покоя в точности соответствовал бы калиевому равновесному потенциалу. Однако в реальном мире не все так просто, и в большинстве клеток имеются ионные каналы других типов, которые позволяют другим положительным ионам проникать внутрь и таким образом смещают потенциал покоя в положительную сторону.

Возникновение потенциала покоя приводит к тому, что клетка начинает действовать как крошечная батарея, в которой электрические заряды (в форме ионных градиентов) разделяются неэлектропроводной липидной мембраной. Накопленная в ней энергия используется для формирования электрических импульсов в нервных и мышечных волокнах.

Такими воротами являются высокоспециализированные транспортные белки. Их великое множество, однако самыми важными следует считать ионные каналы. Как заметил однажды Примо Леви [13], «все знают, что такое канал: он направляет поток воды между двумя непроницаемыми берегами от истока к устью». Каналами называют и другие направляющие поток структуры, включая и те, что пропускают потоки ионов через клеточную мембрану. По существу ионный канал – не более чем крошечная белковая пора. Она имеет центральное отверстие, через которое проходят ионы, и одни или несколько ворот, открывающихся и закрывающихся по мере необходимости для регулирования движения ионов. Когда ворота открыты, ионы, например натрия и калия, входят в клетку или выходят из нее со скоростью более миллиона ионов в секунду [14]. Когда ворота закрываются, поток ионов прекращается.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию