Все формулы мира - читать онлайн книгу. Автор: Сергей Попов cтр.№ 35

читать книги онлайн бесплатно
 
 

Онлайн книга - Все формулы мира | Автор книги - Сергей Попов

Cтраница 35
читать онлайн книги бесплатно

Приложение 3
Аккреция, предельная светимость и массы сверхмассивных черных дыр

Возьмем предмет, поднимем его над полом и отпустим. Он со стуком упадет. Звук – это продольные волны, распространяющиеся в среде и переносящие энергию. Откуда взялась эта энергия в случае падающего тела? Ответ дается в школьном курсе физики. Там рассказывается, что тело на высоте h имеет так называемую потенциальную энергию Ep = mgh, где m – масса тела, а g – ускорение свободного падения. Ускорение можно рассчитать из закона всемирного тяготения:


Все формулы мира

где G – ньютоновская постоянная, M – масса Земли, а R – ее радиус.

В школьных задачах чаще всего можно считать, что высота, с которой падает тело, намного меньше радиуса Земли (R >> h), поэтому g не изменяется.

При падении тело разгоняется, так как на него действует сила в направлении движения. Растет кинетическая энергия, равная:


Все формулы мира

Этот рост происходит за счет уменьшения потенциальной энергии. К моменту удара, как учит нас школьный учебник, вся потенциальная энергия успела перейти в кинетическую. Затем практически мгновенно вся кинетическая энергия перейдет в другие формы, например в тепловую энергию и в энергию звуковой волны. В бытовых ситуациях тепловой эффект мы обычно не замечаем, но вот если на Землю падает крупный метеорит, то нагрев более чем заметен, свидетельством чего являются так называемые тектиты – оплавленные куски стекла, возникающие из-за нагрева пород при ударе.

Школьное описание является несколько упрощенной версией. Нас будет интересовать падение вещества на нейтронные звезды и черные дыры, при этом расстояние, с которого оно прилетает, намного больше размеров компактных объектов. Для такого случая запишем потенциальную энергию более корректно:


Все формулы мира

где M – масса массивного тела, а m – масса падающего объекта (в такой постановке M >> m).

Буквой r мы обозначили расстояние, с которого прилетает вещество, отсчитывая его от гравитирующего центра (т. е. от центра массивного тела).

Вы уже обратили внимание, что потенциальная энергия отрицательна. Она отражает, насколько сильна связь между телами, т. е. сколько нужно энергии, чтобы эту связь разорвать. Скажем, если объект покоится на поверхности массивного тела, то, сообщив ему кинетическую энергию, меньшую, чем модуль потенциальной энергии, но бóльшую, чем его половина, мы сможем вывести его на орбиту. А в результате передачи кинетической энергии, большей модуля потенциальной, объект перестанет быть гравитационно связанным с массивным телом, поскольку сумма потенциальной и кинетической энергии станет положительной.

Нас сейчас будет интересовать аккреция вещества, т. е. его падение на гравитирующий центр. Полная энергия для частиц такого вещества будет отрицательной (мы не рассматриваем случай, когда частицы просто «влетают в лоб», т. е. случайно имеют траекторию движения, пересекающуюся с поверхностью тела). При падении потенциальная энергия уменьшается (отрицательная величина растет по модулю). Значит, должны расти другие виды энергии, имеющие положительное значение, и по крайней мере часть этой энергии может быть излучена. Поэтому в астрофизике аккреция нередко приводит к появлению заметных источников излучения.

Возьмем один грамм вещества на большом расстоянии от массивного тела. Пусть вначале скорость вещества пренебрежимо мала, т. е. его полная энергия примерно равна потенциальной (тут мы не учитываем энергию покоя и внутреннюю энергию вещества). Если расстояние достаточно велико (как говорят, «вещество падает из бесконечности»), то энергия равна нулю. При достижении поверхности потенциальная энергия для единичной массы (m = 1) станет равной Ep = –GM / r.

Но полная энергия должна оставаться нулевой, т. е. излучена может быть энергия, равная по модулю Ep (обычно не вся эта энергия излучается, часть перейдет в другие формы). Оценим, насколько эта величина может быть велика.

При падении на Землю (если пренебречь влиянием атмосферы) энергия от падения 1 грамма вещества составит примерно 6 × 1011 эрг (или 60 кДж). Это всего лишь 15 г в тротиловом эквиваленте. Но если мы теперь возьмем массу километрового астероида, то получим около 20 000 Мт ТНТ! Много, но с галактических расстояний такое не разглядеть.

Посмотрим на другие источники. Один грамм, упавший на поверхность массивного белого карлика, даст в миллион раз больше, чем при падении на Землю. Иными словами, примерно 40 граммов дадут одну килотонну, а в случае нейтронной звезды уже один грамм будет давать несколько килотонн! Это примерно 10 % от E = mc2. Вспомним, что термоядерные реакции в недрах звезд имеют КПД всего лишь 0,7 % (т. е. при синтезе гелия из водорода выделяется лишь 0,007 от mc2). Стало быть, нет ничего удивительного в том, что аккрецирующие нейтронные звезды наблюдаются как мощные источники.

А что с черными дырами? Они же еще компактнее нейтронных звезд. Да, но зато у них нет поверхности. Поэтому в принципе падающее вещество может унести энергию с собой под горизонт. Значит, надо заставить вещество выделить ее достаточно близко от него. Такая ситуация реализуется при формировании аккреционных дисков вокруг черных дыр. Вещество, обладающее достаточно большим орбитальным моментом, закручивается в диск вокруг тяготеющего центра. Из-за трения вещество в диске нагревается, что и позволяет излучить значительную долю энергии.

Откуда же взять много вещества, чтобы возник мощный источник? Чтобы за счет аккреции на нейтронную звезду обеспечить светимость, равную солнечной, надо примерно раз в минуту сбрасывать на нее комету. Что может быть регулярным источником такой массы? Во-первых, есть межзвездная среда. Плотность ее невелика, но в некоторых случаях ее может быть достаточно, чтобы одиночная аккрецирующая нейтронная звезда стала заметным источником. Пока такие объекты не открыты, но ждать, видимо, остается недолго [98]. Во-вторых, звезды часто рождаются не поодиночке, а парами. Перетекание вещества (или его перенос за счет звездного ветра) со звезды-соседки на компактный объект может привести к появлению источника большой светимости.

Светимость по порядку величины можно посчитать по такой простой формуле:


Все формулы мира

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию