Значимые фигуры - читать онлайн книгу. Автор: Йен Стюарт cтр.№ 17

читать книги онлайн бесплатно
 
 

Онлайн книга - Значимые фигуры | Автор книги - Йен Стюарт

Cтраница 17
читать онлайн книги бесплатно

Его «Введение в изучение плоских и пространственных мест» 1629 г. стало новаторским; в нем впервые использовались координаты, позволившие связать геометрию и алгебру. Обычно эту идею приписывают Декарту и его эссе «Геометрия» 1637 г. (приложение к «Рассуждению о методе»), но на самом деле намеки на нее можно найти в гораздо более ранних произведениях, вплоть до древнегреческих. Смысл идеи заключается в использовании двух координатных осей для представления любой точки на плоскости посредством единственной пары чисел (x, y). Сегодня этот метод настолько привычен, что едва ли требует особого обсуждения.

В рассуждении «О касательных к кривым» 1679 г. Ферма находил касательные к различным кривым, то есть занимался геометрической версией дифференциального исчисления. Его метод нахождения максимума и минимума был еще одним предвестником математического анализа. В оптике он сформулировал принцип наименьшего времени: световой луч следует по тому пути, который минимизирует общее время движения. Это был один из первых шагов к вариационному исчислению – области анализа, которая занимается поиском кривых или поверхностей, минимизирующих или максимизирующих некоторую величину. К примеру, какая замкнутая поверхность фиксированного объема имеет наименьшую площадь поверхности? Ответ – сфера; именно поэтому мыльные пузыри имеют сферическую форму, ведь энергия поверхностного натяжения пропорциональна площади поверхности, а пузырь принимает форму, соответствующую минимальной энергии.

В аналогичном ключе Ферма полемизировал с Декартом по поводу закона преломления световых лучей. Декарт, раздраженный, вероятно, тем, что лавры за геометрические координаты достались оппоненту, хотя сам он считал координаты своим изобретением, отозвался критикой в адрес работы Ферма о максимумах, минимумах и касательных. Диспут получился настолько жарким, что в него в качестве арбитра оказался втянут инженер и геометр-новатор Жерар Дезарг. Когда он объявил, что прав Ферма, Декарт неохотно признал: «Если бы вы объяснили это таким образом с самого начала, я бы и возражать не стал».

* * *

Величайшее наследие Ферма относится к теории чисел. В его письмах можно найти множество вызовов для математиков. Среди них предложение доказать, что сумма двух полных кубов не может быть полным кубом; решить уравнение, получившее неудачное название «уравнение Пелля», nx2 + 1 = y2, где n – заданное натуральное число, а найти нужно натуральные числа x и y. Леонард Эйлер ошибочно приписал решение, найденное лордом Брукнером, Джону Пеллю. На самом же деле метод его решения содержится еще в трактате «Брахма-спхута-сиддханта» – «Усовершенствованное учение Брахмы» Брахмагупты, – относящемся к 628 г.

Одна из важнейших и красивейших теорем Ферма говорит о числах, которые можно выразить в виде суммы двух полных квадратов. Альберт Жерар впервые сформулировал утверждение по этой теме в работе, опубликованной посмертно в 1634 г. Ферма первым заявил, что нашел доказательство, написав об этом в письме к Мерсенну в 1640 г. Главное – решить эту задачу для простых чисел. Ответ зависит от типа простого числа в следующем смысле. Единственное четное простое число – 2. Нечетные числа представляют собой либо кратные 4 с добавлением единички, либо кратные 4 с добавлением 3 (то есть имеют вид 4k + 1 или 4k + 3). То же, разумеется, относится и к нечетным простым числам. Ферма доказал, что 2 и все простые числа вида 4k + 1 представляют собой суммы двух квадратов; с другой стороны, простые числа вида 4k + 3 не выражаются через сумму двух квадратов.

Если немного поэкспериментировать, об этом несложно догадаться. К примеру, 13 = 4 + 9 = 22 + 32, и 13 = 4 × 3 + 1. С другой стороны, 7 = 4 × 1 +3 и ясно, что сумма двух квадратов не может равняться 7. Однако доказать теорему Ферма о двух квадратах очень трудно. Простейшая часть – показать, что простые числа вида 4k + 3 не являются суммой двух квадратов; я покажу вам, как это сделать, в главе 10 при помощи фокуса, который Гаусс придумал для систематизации базового метода теории чисел. Показать, что простые числа вида 4k + 1 выражаются в виде суммы двух квадратов, намного сложнее. Доказательство Ферма до нас не дошло, но известны доказательства, сделанные с использованием доступных ему методов. Первое известное нам доказательство дал Эйлер; он объявил о нем в 1747 г., а опубликовал в двух статьях в 1752 и 1755 гг.

Общий вывод таков: натуральное число представляет собой сумму двух квадратов в том, и только том случае, если все простые множители вида 4k + 3 появляются в нем в четных степенях при разложении числа на простые множители. К примеру, 245 = 5 × 72. Множитель 7 имеет вид 4k + 3, но появляется при разложении дважды, то есть входит в число в четной степени; следовательно, 245 представляется в виде суммы двух квадратов. В самом деле, 245 = 142 + 72. Наоборот, 35 = 5 × 7, и множитель 7 появляется здесь лишь однажды, так что 35 не выражается в виде суммы двух квадратов. Этот результат может показаться случайной, ни с чем не связанной диковинкой, но именно от него взяли начало несколько линий исследований, приведшие в конечном итоге к созданию масштабной теории квадратичных форм Гаусса (глава 10). В наше время эту линию рассуждений провели намного дальше. Родственная теорема, доказанная Лагранжем, утверждает, что любое натуральное число представляет собой сумму четырех квадратов (квадрат 0 = 02 разрешен). Это утверждение тоже имеет важные и обширные следствия.

* * *

История Великой теоремы Ферма рассказана многократно и рассказывается по сей день, но я не стану извиняться за то, что расскажу ее еще раз. Это замечательная история. То, что слава Ферма зиждется на теореме, которую он почти наверняка не доказал, можно назвать иронией судьбы. Он заявил, что нашел доказательство, и сегодня мы знаем, что теорема действительно верна, но вердикт истории состоит в том, что методами, доступными ему в то время, доказать ее невозможно. Его утверждение о том, что доказательство найдено, существовало лишь в виде рукописного замечания на полях книги, которая к тому же не уцелела и до нас не дошла; вполне возможно, что оно было сделано преждевременно. В математических исследованиях нередко случается, что, проснувшись поутру, человек уверен, что доказал во сне что-то важное, но к полудню, когда автор находит ошибку, это доказательство испаряется.

Книга, о которой идет речь, – французский перевод «Арифметики» Диофанта, первой значительной работы по теории чисел, если не считать «Начал» Евклида, где изложены многие базовые свойства простых чисел и решены некоторые важные уравнения. В любом случае «Арифметика» – первый специализированный труд на эту тему. Не забывайте, что именно эта книга ввела в математику технический термин «диофантово уравнение» для обозначения полиномиального уравнения, которое следует решать в натуральных или рациональных числах. Диофант составил систематический каталог таких уравнений, и один из центральных образцов его коллекции – уравнение x2 + y2 = z2 для пифагоровых троек, называемых так потому, что треугольник со сторонами x, y и z, по теореме Пифагора, будет прямоугольным. Простейшее решение этого уравнения в ненулевых целых числах – это 32 + 42 = 52, знаменитый треугольник со сторонами 3–4–5. Вообще, решений бесконечное множество: Евклид привел процедуру, позволяющую найти их все; Диофант включил этот метод в свою книгу.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию