Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма - читать онлайн книгу. Автор: Адам Пиорей cтр.№ 12

читать книги онлайн бесплатно
 
 

Онлайн книга - Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма | Автор книги - Адам Пиорей

Cтраница 12
читать онлайн книги бесплатно

Герр нашел еще одну область применения для этой технологии. Когда он получил кандидатский диплом и всерьез начал заниматься дизайном искусственных ног, практически все имевшиеся на рынке протезы лодыжек и ступней представляли собой пассивные приспособления. Их разработчики встраивали внутрь пружинные механизмы, служившие амортизаторами при ходьбе, однако не предпринимали никаких усилий для того, чтобы воссоздать ту способность вырабатывать энергию, которой обладают мышцы людей, по-прежнему имеющих нижние конечности, дарованные им природой. Герру казалось, что для него такое дизайнерское решение неизбежно влечет за собой проблемы. И он пришел к выводу: начинать надо с лодыжки и ступни.

Герр внимательно изучил работы еще одного ученика Макмэхона. В 90-е годы Клэр Фэрли убедительно показала, что человеческая лодыжка представляет собой, по сути, основной сустав, с помощью которого мы регулируем жесткость всей ноги. А поскольку именно увеличение жесткости повышает «прыгучесть» ноги (и дает больший выброс энергии, когда это необходимо), Герр понимал: лодыжку можно рассматривать даже как основной «мотор» ноги. Изменяя уровень мышечной активации, а значит, жесткость и прыгучесть, лодыжка служит своего рода «регулятором громкости», позволяющим увеличивать или уменьшать силу и скорость нашей ходьбы.

«Изменения в лодыжечном суставе сказываются на общей жесткости ноги, — замечает Дэн Феррис, профессор биомеханики Мичиганского университета и бывший аспирант Фэрли: вместе с ней он написал несколько важнейших статей по биомеханике ноги и лодыжки. — Лодыжка управляет всей ногой».

Герру казалось очевидным, что именно пассивность «мертвого груза» искусственных лодыжек могла бы объяснить многочисленные и разнообразные страдания тех, кто пережил ампутацию нижних конечностей или их части. Даже с самыми лучшими моделями, имеющимися в продаже, большинство ампутантов ходили медленнее обычных людей и хуже удерживали равновесие. Их походка выглядела чудноватой, а приспособления, на которых они передвигались, часто вызывали проблемы со спиной. Вероятно, важнее всего здесь то, что, когда ходит человек с нетронутыми нижними конечностями, количество энергии, которую расходуют его икроножные мышцы, возрастает с увеличением скорости ходьбы. Герр полагал, что нехватка лодыжечной энергии в протезах — одна из главных причин, по которым ампутанты тратят при ходьбе на 30 % больше энергии, чем люди с неповрежденными нижними конечностями. Когда нет нормально функционирующей лодыжки, способной модулировать жесткость, упругость и прыгучесть ноги, ходьба значительно менее эффективна.

«Я стал думать о протезах, которые я предпочел бы носить, и о том, как важно, чтобы компьютер контролировал протез и позволял варьировать жесткость, когда человек идет и когда человек бежит», — вспоминает Герр.

И он решил создать математическую модель, которая бы точно описывала, каким именно образом взаимодействуют различные компоненты нижней части ноги. Чтобы это сделать, требовалось задать ряд фундаментальных вопросов насчет обычного поведения обычной, ноги. К. примеру, какое количество энергии вырабатывает нормальная икроножная мышца мужчины ростом 5 футов 9 дюймов [175 см] непосредственно перед тем, как ступня оттолкнется от земли? Или: как сокращение этой мышцы влияет на степень жесткости сухожилий, которые к ней прикреплены? Насколько жесткой становится лодыжка, когда человек пытается замедлить свое движение?

Чтобы получить данные, необходимые для ответа на такие вопросы, Герр вместе со своей группой несколько месяцев перелопачивал результаты предыдущих исследований, отбирая всё, что на тот момент было известно о динамике человеческой ноги и о взаимодействии структур, входящих в ее состав. Если научная литература на ту или иную тему оказывалась слишком скудной, Герр пытался заполнить пробелы, прибегая к помощи добровольцев-неинвалидов и используя технологию захвата движения, чтобы подробно охарактеризовать то, как они перемещаются.

Создавая свое всеобъемлющее математическое описание функционирования ноги, Герр приступил к разработке робопротеза, способного трансформировать всю эту математику обратно — в реальные движения. Чтобы воспроизвести природную способность лодыжки тормозить при ходьбе вниз по склону, Герр модифицировал одно из своих предыдущих изобретений, которое он создал для контроля жесткости коленного протеза. Это устройство состоит из скользящих стальных пластин, отделенных друг от друга маслянистой жидкостью, которая в магнитном поле становится более густой. Электросенсоры измеряют угол приложения и уровень силы, с которой пользователь протеза воздействует на лодыжку, и в соответствии с этими данными компьютер варьирует напряженность магнитного поля. А чтобы определять расположение лодыжки в пространстве и на основании этой информации менять угол наклона искусственной ступни (если, скажем, ступня на несколько мгновений зависла в воздухе при спуске по лестнице), Герр встроил в протезы такие же датчики, которые используются в системах наведения ракет.

Чтобы наглядно следить за своими достижениями, Герр создал собственного виртуального двойника. Изобретатель демонстрирует мне его на большом мониторе.

Это примитивное изображение туловища с ногами, которое бредет по экрану, словно пьяный или слепой. Хотя графика здесь самая простая, нижние конечности этой мультяшной фигурки состоят из сотен виртуальных сухожилий, мышц и костей, и каждый из этих элементов запрограммирован так, чтобы служить моделью той или иной части реальной человеческой ноги. Какой крутящий момент прикладывается суставом к лодыжке или колену? Каков уровень электрической активности в той или иной мышце? Как и когда сухожилия ноги захватывают и высвобождают энергию? Схематический рисунок человечка вбирает в себя все эти данные и отображает их на экране, показывая, как реальный человек (возможно, с завязанными глазами) будет ходить, соблюдая все физические законы движения.

Те же математические описания, определяющие, каким образом ходит виртуальная фигурка, задействованы в программах, контролирующих движение составных частей икроножно-ступневых протезов, которые в этот самый день носит Герр.

Поразительна сама мысль о том, что сейчас, когда я стою с ним рядом, крошечные микропроцессоры, спрятанные где-то внутри всех этих механизмов, невидимых сквозь штанины, способны каждую секунду выполнять невообразимо сложные расчеты, управляя поведением всех-всех частей бионических конечностей Герра. Изобретатель вывел эти формулы на основе измерений и наблюдений, производимых в реальном мире. При этом он исследовал не только то, как реальные человеческие конечности ведут себя по отдельности, но и то, как они взаимодействуют друг с другом. Так, жесткость механического лодыжечного сустава в каждый данный момент может зависеть, в частности, от того, с какой силой моторчики протеза, воспроизводящие природную икроножную мышцу, воздействуют на приводы, воспроизводящие ахиллесово сухожилие. Однако здесь может оказывать свое влияние и то, в какую сторону повёрнут коленный сустав и на какой угол он согнут: возможно, тем самым учитывается скорость, с которой нижняя часть ноги движется вперед или вниз. Короче говоря, в каждое мгновение приходится иметь в виду несметное количество самых разных факторов.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию