Сверхдержавы искусственного интеллекта  - читать онлайн книгу. Автор: Кай-фу Ли cтр.№ 5

читать книги онлайн бесплатно
 
 

Онлайн книга - Сверхдержавы искусственного интеллекта  | Автор книги - Кай-фу Ли

Cтраница 5
читать онлайн книги бесплатно

Глубокое обучение так волнует человечество именно потому, что открывает перед нами огромные перспективы. Его способность распознать схему и оптимизировать ее для получения конкретного результата может применяться для решения множества повседневных проблем. Вот почему такие компании, как Google и Facebook, боролись за немногочисленных экспертов в области глубокого обучения и платили им миллионы долларов, чтобы получить доступ к самым передовым научным разработкам. В 2013 году Google приобрела стартап, основанный Джеффри Хинтоном, а в следующем году и британский стартап в области ИИ под названием DeepMind – компанию, которая и построила AlphaGo, израсходовав более 500 млн долларов [11]. Результаты этих проектов продолжают поражать воображение публики и появляться в заголовках газет. Они вызывают у нас ощущение, что мы стоим на пороге новой эры, когда машины обретут невероятные возможности, и нет гарантий, что они не начнут вытеснять людей.

Международные исследования ИИ

Но какое место занимает во всем этом Китай? Исторически глубокое обучение было почти полностью разработано в Соединенных Штатах, Канаде и Великобритании. Затем некоторые китайские предприниматели и венчурные фонды, такие как мой собственный, начали инвестировать средства в эту область. Но подавляющая часть технического сообщества Китая не обращала должного внимания на глубокое обучение вплоть до событий 2016 года, то есть прошло целое десятилетие после появления революционных теоретических работ в этой области и четыре года после того, как глубокое обучение одержало эпохальную победу на конкурсе компьютерного зрения.

Американские университеты и технологические компании на протяжении десятилетий снимали сливки с работ талантливых специалистов, которых страна привлекала со всего мира. США надеялись на безусловное лидерство и в области ИИ, которое должно было только укрепляться. Исследовательская элита страны трудилась в Кремниевой долине в обстановке щедрого финансирования, уникальной культуры и поддержки со стороны влиятельных компаний. В глазах большинства аналитиков Китаю в отношении ИИ суждено было играть ту же роль, что и в предыдущие десятилетия, – роль подражателя, вечно не поспевающего за развитием передовых технологий.

В следующих главах вы увидите, что этот прогноз оказался ошибочным. Он был основан на устаревших оценках китайской технологической среды, а также на фундаментальном непонимании того, что движет продолжающейся революцией ИИ. Хотя первые зерна связанных с ИИ идей проросли на Западе, Китай будет пожинать их плоды. И причина этого глобального сдвига заключается в двух переходах: от эпохи открытий к эпохе внедрения и от эпохи экспертных знаний к эпохе данных.

В основе ошибочной веры в то, что Соединенные Штаты являются страной передового ИИ, лежит впечатление, что мы живем в эпоху открытий и наблюдаем за тем, как элита исследователей ИИ постоянно ломает традиционные парадигмы и разгадывает старые тайны. Это впечатление подпитывается постоянным потоком захватывающих дух сообщений СМИ: искусственный интеллект диагностирует некоторые виды рака лучше, чем это делают врачи; он одержал труднейшую победу над мастерами игры в техасский холдем [12]; он самообучается без какого-либо вмешательства человека. С учетом такого повышенного внимания к каждому новому достижению случайному наблюдателю или даже эксперту-аналитику простительно полагать, что мы постоянно открываем новые горизонты исследований в области искусственного интеллекта.

Однако я считаю, что это впечатление обманчиво. Многие из якобы значительных вех представляют собой просто новые способы использовать достижения прошлого десятилетия – в первую очередь глубокого обучения и дополняющих его технологий, таких как обучение с подкреплением сигналами от среды взаимодействия и перенос обучения [13] для решения новых задач. То, что делают эти исследователи, требует большого мастерства и глубоких знаний, умения изменять сложные математические алгоритмы, манипулировать большими объемами данных, адаптировать нейронные сети под различные задачи. Для такой работы часто требуется как минимум степень кандидата наук. И тем не менее все это лишь небольшие шаги вперед – постепенное улучшение результатов последнего грандиозного прорыва в области глубокого обучения.

Эпоха внедрения

Постепенно мы начинаем применять уникальные возможности глубокого обучения для распознавания образов и схем, для прогнозирования в таких разнородных областях деятельности, как диагностика заболеваний, условия страхования, вождение автомобилей или перевод с китайского на английский. Но все эти шаги не означают, что мы стремительно приближаемся к созданию «ИИ общего назначения» или совершили какой-то прорыв. Наступила эпоха внедрения, то есть создания реальных продуктов на основе ИИ. Компаниям, которые захотят на этом заработать, понадобятся талантливые предприниматели, инженеры и менеджеры продукта.

Пионер глубокого обучения Эндрю Ын сравнил исследование ИИ с работой Томаса Эдисона над внедрением электричества: передовая технология существует сама по себе, и только поставив ее на службу человеку, можно революционизировать десятки различных отраслей промышленности. Предприниматели XIX века в короткие сроки поставили электричество на службу человеку [14]: чтобы тот мог готовить пищу, освещать помещения и приводить в действие промышленное оборудование. Точно так же современные предприниматели, опираясь на исследования ИИ, начинают ставить на службу человеку и глубокое обучение. До сего дня было проделано много сложных теоретических изысканий, теперь же пришло время предпринимателям засучить рукава и приступить к нелегкой работе по превращению алгоритмов в устойчивый бизнес. Это не уменьшит энтузиазма в области исследования ИИ – просто реализация делает академические успехи осязаемыми, что действительно меняет нашу повседневную жизнь. Наступление эры практического применения означает, что после десятилетий самоотверженных исследований мы, наконец, увидим их плоды – и именно этого я так ждал большую часть своей взрослой жизни.

Поняв разницу между открытием и внедрением, мы лучше поймем, как ИИ будет влиять на нашу жизнь и какая страна станет лидером, когда дело дойдет до реализации новых технологий на практике. В эпоху открытий прогресс шел благодаря усилиям группы выдающихся ученых, и почти все они работали в США и Канаде. Их проницательность и новаторство привели к тому, что возможности компьютеров выросли быстро и радикально. Со времени зарождения глубокого обучения ни одна другая группа исследователей или инженеров не создала инноваций такого масштаба.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию