Образование гелия в первые несколько минут Большого взрыва было связано с ядерными реакциями и столкновениями атомов, которые можно воспроизвести экспериментально. Напротив, процессы в инфляционную эпоху, которые определяют такие фундаментальные космические числа, как Q, слишком экстремальны, чтобы имитировать их на Земле, даже в ускорителях. Это усложняет задачу. С другой стороны, сам факт мотивирует к изучению очень ранней Вселенной, которое может обеспечить надежную проверку новых теорий объединения, потому что это единственный момент, когда энергии были достаточно высоки, чтобы продемонстрировать явные практические следствия этих теорий. Когда астрономы пытаются понять космические феномены, они обычно пользуются результатами тех открытий, которые физики делают в лабораториях. Возможно, сейчас у астрономов появился шанс «отплатить услугой за услугу», открыв новые фундаментальные физические принципы. Есть и другие примеры подобного – скажем, нейтронные звезды расширили наши знания о материи с высокой плотностью и большой силе тяготения. Но самым показательным был сам Большой взрыв. В 1950-х гг. космология находилась вне основного русла физики – только несколько «оригиналов» вроде Гамова обращали на нее какое-то внимание. Напротив, в настоящее время проблемы космологии вызывают интерес многих ведущих физиков-теоретиков. И это, разумеется, дает нам поводы для оптимизма.
Микроскопические «вибрации», появившиеся, когда наша Вселенная была меньше мяча для гольфа, теперь растягиваются через всю Вселенную. В них содержатся неоднородности, из которых рождаются галактики и скопления галактик. Теоретики все еще не доказали, могут ли инфляционные модели «естественным образом» давать объяснение числу Q, равному 10–5 и характеризующему уровень этой неоднородности. Это зависит от некоторых физических свойств, которые все еще «не проверены в бою». Но мы можем узнать какие-нибудь детали и исключить какие-то варианты, потому что отдельные версии инфляции дают совершенно отличные друг от друга предсказания. Измерения, сделанные космическими аппаратами WMAP и Planck, и наблюдения за тем, как галактики объединяются в скопления, дают ключи к инфляционной эпохе и некоторые сведения о «физике великого объединения», которая не может быть напрямую выведена из экспериментов на уровне «обычных» энергий.
Наряду с флуктуациями, которые развиваются в галактиках и их скоплениях, раздувание, как считается, создает «гравитационные волны» – колебания в самой ткани пространства, пересекающие Вселенную со скоростью света. Объекты, попавшие под такую волну, испытывают на себе силу притяжения, которая вначале тянет их в одну сторону, а потом – в другую; в результате они слегка «трясутся». Этот эффект очень мал, и его обнаружение действительно представляет собой огромную техническую трудность. В рамках проекта LISA Европейского космического агентства планируется запустить на орбиту вокруг Солнца три космических аппарата, разделенных миллионами километров. Расстояния между ними будут измеряться лазерными лучами с точностью до миллионных долей метра.
Но даже аппараты LISA могут оказаться недостаточно чувствительными для того, чтобы поймать эти первозданные вибрации. Тогда их разработчиков успокоит то, что гораздо легче будет обнаружить другие сигналы. Например, интенсивный всплеск гравитационных волн создается, когда две черные дыры сталкиваются и сливаются. Мы ожидаем, что такие события время от времени случаются
[38]. В центре большинства галактик имеется черная дыра, по массе равная миллионам звезд. Пары галактик часто сталкиваются и смешиваются (мы наблюдаем, как происходит множество таких событий). Когда это случается, черные дыры в центре обеих галактик сливаются.
Таким образом, мы можем вскоре ждать эмпирических сведений об инфляционной эпохе. Даже если нам неизвестны соответствующие физические принципы, мы можем вычислить последствия определенных допущений этой теории (значение Q, гравитационные волны и т. д.). Тогда мы сможем сравнить их с наблюдениями и, таким образом, по крайней мере сузить круг возможных вариантов.
ДРУГИЕ РЕЛИКТЫ
Любые остатки ультраранней эпохи будут важны как необходимые связующие звенья между космосом и микромиром. Одна интересная возможность (которая неясно вырисовывалась еще в сознании Гута, когда он работал над своей теорией) – это мысль о том, что магнитные монополи могли остаться от ранней Вселенной. Фарадей и Максвелл показали тесные взаимосвязи между электричеством и магнетизмом, но было одно ключевое различие (и они это понимали) между этими двумя силами: положительные и отрицательные электрические заряды существуют, но «северный» и «южный» магнитные полюса, по всей видимости, не могут существовать по отдельности. Магниты – это диполи (имеют два полюса), а не монополи (один полюс), и, если мы разрубим диполь пополам, мы никогда не получим два монополя, а только диполи меньшего размера. Несмотря на долгие замысловатые изыскания, никому так и не удалось «поймать» монополь.
Современные физики-теоретики предполагают, что монополи могут существовать, но они должны быть чрезвычайно тяжелыми (в миллион миллиардов раз тяжелее протона). Из-за высокой массы, для того чтобы они возникли, необходима огромная концентрация энергии – т. е. такая энергия, которая властвовала в самой ранней Вселенной и больше никогда. В нашей сегодняшней Вселенной монополей ничтожно мало: магнитные поля пронизывают межзвездное пространство, и их просто «закоротило» бы, если бы монополей было много. Гут был озадачен отсутствием монополей, потому что, по всей видимости, они неизбежно появлялись в ранней Вселенной. В связи с этим его лучшим предположением была мысль о том, что их общая масса составила бы в миллионы раз больше темной материи, чем ее существует на самом деле. Важным преимуществом расширения (если оно началось после того, как сформировались монополи) было то, что оно рассеяло предполагаемые монополи, и это объясняет их очевидное отсутствие сегодня.
Монополи – это нечто вроде «узлов» в космосе. На научном языке такие явления называются «топологическими дефектами». Куда более интересно, что это дефекты в форме линий, а не в форме точек – районы космоса, которые завязаны узлом в трубки тоньше атома. Они могли бы формировать замкнутые петли, как эластичные ленты, вращаясь практически со скоростью света, или же вытягиваться прямо через всю Вселенную. Некоторые специалисты по космологии строят предположения о том, что эти топологические дефекты могут быть ростками космических структур – в результате они вносят свой вклад в значение числа Q. Эта идея привлекла внимание в начале 1990-х гг., но оказалось, что она не согласуется с некоторыми деталями в процессах образования скоплений галактик, выявленными позднее. Однако эти петли все же могут существовать, и они имеют такие необыкновенные характеристики (тоньше атома, но настолько тяжелые, что каждый километр может сравниться по массе с Землей), что астрономы должны приложить массу усилий, чтобы их обнаружить.
Другая интересная возможность – миниатюрные черные дыры. Дыра размером с один атом может быть такой же массивной, как гора. Как мы уже видели в главе 3, есть прямой результат того, что число N так огромно: тяготение так слабо, что не может преодолеть другие силы в масштабе атомов, если только не «упаковать» массу N атомов в размер одного. Очень может быть, что в ультрараннюю эпоху существовало давление, способное сформировать такие маленькие черные дыры. Хотя сегодня никакие процессы не могут обеспечить такую степень сжатия, возможно, какая-нибудь будущая высокоразвитая цивилизация сможет это сделать. Особенно интересные перспективы открываются, если соединить эту мысль с другой – о том, что внутри черной дыры может развиваться новая вселенная, расширяясь в новое (возможно, бесконечное) пространство-время, никак не связанное с нашим.