ДНК. История генетической революции - читать онлайн книгу. Автор: Кевин Дэвис, Эндрю Берри, Джеймс Д. Уотсон cтр.№ 80

читать книги онлайн бесплатно
 
 

Онлайн книга - ДНК. История генетической революции | Автор книги - Кевин Дэвис , Эндрю Берри , Джеймс Д. Уотсон

Cтраница 80
читать онлайн книги бесплатно

Вентер твердо верил в то, что мы находимся на заре новой эры, когда можно будет создавать искусственные клетки. Он, конечно, забегал вперед, не желая тратить время на решения комитета по биоэтике, не задумываясь о необходимости хотя бы посоветоваться на тему: а стоит ли так быстро бежать в этом направлении? Люди вроде меня не видят моральной дилеммы в «творении жизни» таким образом, но не все думают как я. Прошло 15 лет от начала первой попытки секвенирования бактериального генома до сборки первой синтетической клетки. Вторая попытка синтезировать бактериальный геном была предпринята в 2010 году. Команда Вентера, преодолев многочисленные технологические и биохимические сложности, вышла на этот этап, для чего переключила внимание с M. genitalium на более крупную Mycoplasma mycoides (несмотря на то что в геноме M. mycoides более миллиона оснований, для работы она оказалась удобным объектом, поскольку растет в лабораторных условиях гораздо быстрее, чем M. genitalium). В качестве прототипа была выбрана хромосома бактерии Mycoplasma mycoides (подвид capri GM12) объемом 1,08 миллиона нуклеотидных пар. Созданный геном получил кодовое обозначение JCVI-syn1.0. Он практически полностью повторял геном одного из штаммов бактерии Mycoplasma mycoides, за исключением нескольких искусственно внедренных генетических маркеров, нескольких удаленных в процессе синтеза незначимых генов и 19 мутаций, возникших в процессе сборки фрагментов ДНК. Искусственные бактериальные хромосомы были спроектированы на компьютере, синтезированы из четырех реактивов, собраны в дрожжевых клетках, перенесены в бактерию и, наконец, трансплантированы в оболочку бактериальной клетки. «Это первый самовоспроизводящийся вид на планете, созданный при помощи компьютера», – объявил Вентер. Клетки с искусственным геномом нормально функционируют и способны к многократным делениям.

Ранее было сказано, что в искусственный генетический код были встроены четыре водяных знака, отчасти для того чтобы развеять окончательные сомнения в том, что эта клетка не человеческая. В водяных знаках значились фамилии сорока шести членов команды, а также подборка цитат, в том числе слова ирландского писателя Джеймса Джойса: «Жить, заблуждаться, падать, торжествовать, воссоздавать жизнь из жизни». Однако наследников Джойса это совершенно не устроило, они направили Вентеру письмо с требованием о приостановке и прекращении деятельности, заявив, что он использовал цитату без разрешения. Команда Вентера также включила в водяные знаки цитату знаменитого физика Ричарда Фейнмана из Калифорнийского технологического института; впоследствии, правда, оказалось, что они ее переврали, переставив слова местами и изменив значение некоторых фраз.

Такой замечательный и успешный проект лишний раз подтверждает истину, давно известную всем молекулярным биологам: основа жизни – это сложная химия и ничего более. Открытие Вентера попало в растиражированные заголовки и предсказуемо вызвало упреки в «посягательстве на божественное», но сам Вентер в большей степени заинтересован в практическом применении синтетической биологии в различных сферах: от производства биотоплива до разработки вакцин. Теперь только прямо противоположный вывод о том, что жизнь не сводится к сумме простейших первоэлементов и процессов, мог бы всерьез взбудоражить современное научное сообщество.

Анализ ДНК уже преобразил микробиологию. До широкого применения методов секвенирования ДНК идентификация бактериальных штаммов напрямую зависела от разрешающей способности приборов: можно отметить, какова форма колонии, растущей в чашке Петри, рассмотреть форму отдельных клеток в микроскоп либо воспользоваться относительно грубыми биохимическими анализами, например окрашиванием по Граму. В таком случае штамм может быть признан грам-положительным или грам-отрицательным в зависимости от структуры его клеточной стенки. Однако с появлением секвенирования ДНК микробиологи вдруг смогли ориентироваться на отличительные признаки, которые однозначно, определенно характеризовали любой конкретный вид. Даже такие штаммы, которые обитают в глубинах океана и поэтому не могут быть выращены в лабораторных культурах (поскольку сложно воспроизвести условия, характерные для их естественной среды обитания), поддаются анализу ДНК – достаточно добыть с глубины нужный образец.

В 2006 году компания TIGR вошла в состав Института Дж. Крейга Вентера. Эта организация до сих пор остается флагманом бактериальной геномики. Вскоре ученые как следует отсеквенировали геномы более ста различных бактерий, в том числе Helicobacter, вызывающую язву желудка, холерный вибрион, Neisseria (возбудитель менингита) и Ch. pneumonia. Самым серьезным конкурентом Институту Дж. Крейга Вентера был Сенгеровский институт. Во главе британского направления стоял Барт Баррелл, работы которого проводились за пределами США, ему в этом плане, можно сказать, повезло; в Америке его скромные научные регалии не позволили бы пробиться в высшую научную лигу. Баррелл занялся наукой сразу по окончании старшей школы и работал ассистентом у Сенгера задолго до того, как секвенирование ДНК стало реальностью; он был одним из немногих, кто получил степень PhD, не имея законченного высшего образования. Прежде чем приступить к работе с бактериями, Баррелл зарекомендовал себя как пионер автоматизации, вооружившись несколькими капиллярными ABI-секвенаторами и обработав с их помощью около 40 % генома пекарских дрожжей, состоящего из 12 миллионов оснований. Это происходило в то время, пока крупный европейский консорциум, занятый секвенированием генома дрожжей, все еще ограничивался ручными методами секвенирования. Позднее усилия группы Баррелла были вознаграждены: именно его команда первой отсеквенировала геном Mycobacterium tuberculosis, возбудителя тяжелого хронического заболевания, которое некогда именовалось «чахотка».

Все перспективы анализа бактериальной ДНК в полной мере удалось реализовать в медицинской диагностике: для эффективного лечения врач должен первым делом идентифицировать возбудителя. Традиционно для этого требовалось культивировать бактерии из инфицированных тканей – это медленный процесс, особенно мучительный, когда нельзя терять ни минуты. Пользуясь таким быстрым, простым и точным анализом ДНК для распознавания микробов, врач мог приступить к адекватному лечению гораздо быстрее. Внедрение этой технологии было буквально навязано практической медицине в интересах национальной безопасности: осенью 2001 года требовалось выявить источник распространения сибирской язвы, зарегистрированный в США. Секвенировав бактерию сибирской язвы из образца, взятого у первой жертвы, исследователи из TIGR получили точный «генетический отпечаток» именно этого штамма. В 2008 году Брюс Айвинс, микробиолог на госслужбе, которого признали главным подозреваемым по этому делу, совершил самоубийство. В 2011 году, когда в Германии из-за смертельной вспышки токсикоинфекции погибло 23 человека, молниеносное секвенирование ДНК позволило выявить опасную бактерию за считаные дни. Сколько жизней при этом было спасено!

По мере того как мы всё больше узнаем о геномах микроорганизмов, вырисовывается поразительная закономерность. Как мы уже знаем, эволюция позвоночных – это история прогрессирующей генетической экономии: благодаря расширению арсенала регуляторных генетических механизмов одни и те же гены становятся все более многофункциональными. Даже если и появляются новые гены, они обычно представляют собой всего лишь вариации на имеющуюся генетическую тему. Напротив, бактериальная эволюция оказалась целой сагой о гораздо более радикальной трансформации; это головокружительный процесс, благоприятствующий импорту или созданию совершенно новых генов, а не доводке того материала, который уже имеется в геноме.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию