Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать онлайн книгу. Автор: Леонард Сасскинд cтр.№ 93

читать книги онлайн бесплатно
 
 

Онлайн книга - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики | Автор книги - Леонард Сасскинд

Cтраница 93
читать онлайн книги бесплатно

Индийский физик Ашок Сен был первым, кто попробовал собрать экстремальную черную дыру и проверить струнную теорию энтропии черных дыр. В 1994 году он подошел к этому очень близко, но все же недостаточно для завершения истории. В среде физиков-теоретиков Сена ценят очень высоко. Он имеет репутацию глубокого мыслителя и технического волшебника. Застенчивый, хрупкий человек с исключительно сильным мелодичным бенгальским акцентом, из-за которого его иногда трудно понять. Тем не менее его лекции славятся своей ясностью. В строго педагогической манере он записывает каждое новое понятие на доске. Идеи разворачиваются с неизменной последовательностью, которая делает все сказанное кристально ясным. Его научным статьям тоже присуща эта совершенная ясность.

Я даже не знал, что Сен занимался черными дырами. Но вскоре после того, как я вернулся в Соединенные Штаты из поездки в Кембриджд, кто-то — думаю, это была Аманда Пит — вручил мне для прочтения его статью. Она была длинная и техническая, но в последних нескольких абзацах Ашок применял идеи теории струн — те, что я описывал в Ратджерсе, — чтобы вычислить энтропию нового класса экстремальных черных дыр.

Черная дыра Сена была сделана из деталей, о которых мы знали в 1993 году, — фундаментальных струн и шести дополнительных свернутых размерностей пространства. То, что сделал Сен, было простым, но очень ясным развитием моих собственных ранних идей. Его главная инновация состояла в том, чтобы начать со струны не только очень сильно возбужденной, но также еще и многократно охватывающей одно из свернутых измерений. В упрощенном цилиндрическом мире — расширенной версии Лайнландии — витки струны выглядят как резиновая лента, обернутая вокруг куска пластиковой трубы.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Такие струны тяжелее обычных частиц, поскольку требуется энергия для того, чтобы растянуть их вокруг цилиндра. В типичной теории струн масса витка струны может составлять несколько процентов планковской массы.

Затем Сен взял простую струну и дважды обернул ее вокруг цилиндра.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Струнные теоретики сказали бы, что эта струна имеет винтовое число [144], равное 2, и она еще тяжелее, чем струна, делающая один виток. Но что, если струна намотана вокруг свернутого измерения не один или два раза, а миллиарды раз?

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

На количество оборотов струны вокруг свернутого измерения пространства нет ограничений. В результате она может сравниться по массе со звездой или даже с галактикой. Но место, которое она занимает в обычном пространстве, то есть в несвернутых размерностях обычного трехмерного пространства, очень мало. Вся эта масса заключена в столь крошечном пространстве, что она гарантированно будет черной дырой.

Сен применил еще одну хитрость, еще один ингредиент теории струн образца 1993 года: извивы, движущиеся вдоль струны. Информация должна была скрываться в особенностях этих извивов, в точности как я описывал это годом ранее.

Извивы на эластичной струне не остаются неподвижными. Они распространяются вдоль струны, подобно волнам: одни по часовой стрелке, а другие против. Два извива, движущиеся в одном направлении, гонятся друг за другом по струне, никогда не сталкиваясь. Однако если две волны движутся в противоположных направлениях, они сталкиваются, порождая сложную мешанину. Поэтому Сен решил хранить всю скрытую информацию в волнах, движущихся «в ногу» по часовой стрелке без всяких столкновений.

Когда все ингредиенты были собраны и различные рукоятки включены, у струны Сена не было других возможностей, кроме как превратиться в черную дыру. Но вместо обычной черной дыры из-за накручивания струны вокруг свернутого измерения появляется совершенно особый тип экстремальной черной дыры.

Экстремальная черная дыра электрически заряжена. Но где же электрический заряд? Ответ был известен уже много лет: накручивание струны на компактизированное измерение придает ей электрический заряд. Каждый оборот струны добавляет одну единицу заряда. Если струна намотана в одном направлении, получается положительный заряд, если в противоположном — отрицательный. Гигантские многократно намотанные струны Сена также могут рассматриваться как сгустки электрического заряда, скрепляемые гравитацией, — иными словами, как заряженная черная дыра.

Площадь — это геометрическое понятие, а геометрия пространства и времени управляется эйнштейновской общей теорией относительности. Единственный способ узнать площадь горизонта черной дыры — это вывести ее из уравнений Эйнштейна для гравитации. Сен мастерски владел этими уравнениями и легко (легко для него) решил их для специального сконструированного им типа черных дыр, а затем вычислил площадь горизонта.

И тут случилась катастрофа! Когда уравнения были решены и площадь горизонта подсчитана, результат оказался равным нулю! Иными словами, вместо замечательной обширной оболочки горизонт сжался до размеров точки пространства. Вся энтропия, запасенная в извивающихся, змеящихся струнах, была, похоже, сконцентрирована в крошечной точке. Это не только было проблемой для черных дыр, но и прямо противоречило голографическому принципу, утверждающему, что максимальная энтропия области пространства равна ее площади в планковских единицах. Где-то была допущена ошибка.

Сен ясно видел, что возникла проблема. Уравнения Эйнштейна классические, то есть они игнорируют эффекты квантовых флуктуаций. Без квантовых флуктуаций электрон в атоме водорода упал бы на ядро, и весь атом стал бы по размеру не больше протона. Но квантовые движения в основном состоянии, вызванные принципом неопределенности, делают атом в 100 000 раз больше ядра. Сен понял, что то же самое может происходить и с горизонтом. Хотя классическая физика предсказывает, что он должен сжиматься в точку, квантовые флуктуации могли бы расширить его до того, что я называю растянутым горизонтом.

Сен внес необходимые поправки: быстрая, «на обороте конверта», оценка показала, что энтропия и площадь растянутого горизонта действительно пропорциональны друг другу. Это был еще один триумф струйной теории энтропии горизонта, но, как и прежде, победа была неполной. Точность вновь ускользнула; оставалась неопределенность относительно того, насколько именно квантовые флуктуации могут растянуть горизонт. Блестящая работа Сена по-прежнему заканчивалась расплывчатой тильдой. Максимум, что он мог сказать, это то, что энтропия черной дыры пропорциональна площади горизонта. Это было почти попадание, но «почти» не считается. «Последний гвоздь в гроб» еще предстояло рассчитать.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию