В рассуждениях Стивена я хотел заполнить важный пробел, о котором, по-видимому, никто не задумывался. Вот в чем была идея. Представьте, что область над самым горизонтом заполнена множеством крошечных невидимых ксерокопировальных машин. Когда любая информация, письменный документ например, падает к горизонту, эти машины дублируют ее, порождая две совершенно идентичные копии. Одна из них продолжает без помех двигаться сквозь горизонт во внутренние области черной дыры и, в конце концов, уничтожается в сингулярности. Но судьба второй копии значительно сложнее. Для начала она тщательно перемешивается и перетасовывается вплоть до полной нераспознаваемости (без знания схемы перемешивания). А затем она испускается вовне в виде Кокинговского излучения.
Фотокопирование информации перед самым пересечением горизонта, казалось бы, решает проблему. Рассмотрим сначала наблюдателей, парящих в стороне от черной дыры. Они увидят, как хокинговское излучение возвращает каждый бит информации. И они придут к выводу, что нет надобности менять правила квантовой механики. Грубо говоря, они посчитают, что хокинговские идеи относительно разрушения информации ошибочны.
А что можно сказать о свободно падающем наблюдателе? Сразу после пересечения горизонта он оглянется по сторонам и увидит, что ничего не случилось. Все его биты при нем, составляют ту же личность и продолжают падать в окружении тех же предметов, что и раньше. Горизонт, с этой точки зрения, — это не более чем безобидная точка невозврата, так что эйнштейновский принцип эквивалентности полностью соблюдается.
Может ли быть так, что горизонт черной дыры покрыт идеально надежными миниатюрными (возможно, планковских размеров) копировальными устройствами? Это кажется соблазнительной идеей. Если она верна, то может легко и логично объяснить парадокс Стивена: никакая информация в черной дыре не теряется, и будущие физики могут продолжать использовать принципы квантовой механики. Квантовые ксероксы на горизонте каждой черной дыры могли бы неожиданно положить конец Битве при черной дыре.
Сидни был впечатлен. Он повернулся на своем стуле лицом к аудитории и, в своей характерной манере, объяснил сказанное гораздо более ясно, чем излагал я сам. Стивен, однако, ничего не сказал. Скрючившись, он сидел на своем кресле с широкой улыбкой на лице. Было очевидно, что я знаю нечто, неизвестное Сидни. На самом деле и я и Стивен понимали, что мое объяснение было соломенным чучелом, которое создавалось лишь для того, чтобы его сжечь.
Мы со Стивеном знали, что идеальные устройства копирования квантовой информации противоречат принципам квантовой механики. В мире, управляемом математическими правилами, сформулированными Гейзенбергом и Дираком, идеальная копировальная машина невозможна. Я назвал это утверждение принципом квантовой нексерокопируемости. В новой области физики, называемой квантовой теорией информации, эта же идея называется принципом неклонируемости.
Я торжествующе посмотрел на Коулмена и сказал: «Сидни, квантовый ксерокс невозможен», ожидая, что он немедленно меня поймет. Но в этот раз его огненно-быстрый мозг протормозил, и мне пришлось подробно все растолковывать. Объяснение, которое я дал Сидни и другим участникам семинара, заставило заполнить формулами всю доску и отняло почти все оставшееся время семинара. Вот его упрощенная версия.
Представьте себе машину с одним входом и двумя выходами. Во входной порт можно поместить любую систему в любом квантовом состоянии. Например, в копир можно загрузить электрон. Машина выполняет ввод и выдает два идентичных электрона. Причем объекты на выходах идентичны не только между собой, но и с тем, что первоначально был на входе.
На входе один электрон с определенной волновой функцией. На выходе два идентичных электрона
Квантовый ксерокс
Если бы такую машину можно было построить, она позволила бы обойти нерушимый принцип неопределенности Гейзенберга. Допустим, мы хотим узнать одновременно положение и скорость электрона. Все, что нам понадобится, — это скопировать его, а затем измерить положение одного клона и скорость другого. Но, конечно, такое невозможно в силу принципов квантовой механики.
К концу часа я успешно защитил парадокс Стивена и объяснил принцип нексерокопируемости, но у меня не осталось времени, чтобы изложить собственную точку зрения. И перед самым завершением семинара бестелесный механический голос Стивена провозгласил: «Так что теперь вы со мной согласны!» Его глаза озорно блестели.
Было очевидно, что я потерпел поражение. Я был повержен моим собственным дружественным огнем, недостатком времени и особенно быстрым остроумием Стивена. Покидая тем вечером Аспен, я задержался на Диффикалт-Крик и достал было свою нахлыстовую удочку. Однако моя любимая заводь оказалась полна шумных детей, плавающих на резиновой камере.
Часть III
Контратака
15
Сражение в Санта-Барбаре
К концу одного из пятничных рабочих дней в 1993 году все остальные сотрудники уже разошлись по домам. Только мы с Джоном и Ларусом еще сидели в моем стэндфордском офисе, трепались и пили сваренный Ларусом кофе. Исландцы варят самый крепкий кофе в мире. По словам Ларуса, это как-то связано с их традицией засиживаться за выпивкой до глубокой ночи.
Ларус Торласиус, высокий исландский викинг (он говорит, что происходит не от норвежских воинов, а от ирландских рабов), был стэнфордским постдоком, только что защитившим диссертацию в Принстоне. Джон Углум, техасец и республиканец (но не религиозного толка, а либертарианец в духе Айн Рэнд
[94]) был моим аспирантом. Несмотря на политические и культурные различия — сам я либеральный еврей из Южного Бронкса, — мы были приятелями с множеством чисто мужских развлечений: пить кофе (а иногда и что покрепче), спорить о политике, разговаривать о черных дырах. (Немного позже Аманда Пит, студентка из Новой Зеландии, расширит наше маленькое братство до трех братьев и сестры.)
К 1993 году черные дыры не только появились у физиков на экранах радаров, но и оказались в самом центре поля зрения. Отчасти причиной была провокационная статья, написанная примерно полутора годами ранее четырьмя известными американскими физиками-теоретиками. Курт Коллан, принстонский аристократ, ведущий ученый в области физики элементарных частиц, был с 1960-х годов влиятельным членом американского научного истеблишмента. (Он был научным руководителем диссертации Ларуса.) Энди Строминджер и Стив Гиддингс были более молодыми, напористыми профессорами Калифорнийского университета в Санта-Барбаре (UCSB). В то время я различал их по тому, что Гиддингс носил шорты, а Строминджер — подтяжки. Джефф Харви из Чикагского университета был (и остается) великим физиком, талантливым композитором (см. конец главы 24) и эстрадным комиком. Собирательно они были известны как CGHS (по инициалам), а описанную ими упрощенную версию черных дыр называли CGHS-дырами. Их совместная статья на короткое время стала сенсацией, отчасти потому авторы заявили, что наконец решили проблему потери информации при испарении черной дыры.