Эволюция Вселенной и происхождение жизни - читать онлайн книгу. Автор: Пекка Теерикорпи cтр.№ 145

читать книги онлайн бесплатно
 
 

Онлайн книга - Эволюция Вселенной и происхождение жизни | Автор книги - Пекка Теерикорпи

Cтраница 145
читать онлайн книги бесплатно

Другие методы поиска.

Для обнаружения экзопланет сейчас используется несколько методов. Каждый из них имеет свои ограничения, и все вместе они удачно дополняют друг друга. Например, метод прохождений, состоящий в поиске затмения звезды планетой, очень чувствителен к ориентации орбиты. Его преимущество состоит в том, что можно искать эпизоды прохождения планеты перед своей звездой одновременно у огромного количества звезд, фактически — у всех звезд в поле зрения камеры. Как показано на рис. 32.2, прохождение планеты размером с Юпитер перед Солнцем вызовет для удаленного наблюдателя ослабление блеска светила на 1 %, и это затмение с плоским минимумом продлится около 30 часов. Чтобы убедиться, что это явление вызвано именно планетой, нужно пронаблюдать по меньшей мере три затмения, которые будут происходить в точно рассчитанный день с периодом, например в случае Юпитера, около 12 лет. Этот метод очень удобен для короткопериодических орбит. А если привлечь еще и данные метода лучевых скоростей, то можно точно измерить не только размер, но и массу, а значит — и плотность планеты. Большинство экзопланет, изученных таким способом, имеют плотности, сравнимые с плотностью воды, но встречаются и очень рыхлые, с плотностью всего лишь в четверть плотности воды.

Эволюция Вселенной и происхождение жизни

Рис. 32.2. Обнаружение экзопланеты по затмению. Планета (черный кружок) проходит перед диском звезды (большой белый кружок), приводя к ослаблению ее наблюдаемого блеска (см. график зависимости блеска от времени). Когда планета (пунктирный кружок) находится за звездой, она не оказывает влияния на блеск звезды (верхняя горизонтальная линия на графике).

Ранее мы уже рассказывали о гравитационном линзировании. Рассмотрим лучи света далекой звезды, идущие в сторону нашего телескопа. Если между телескопом и далекой звездой находится некоторый объект, например более близкая к нам звезда, то свет далекой звезды будет немного отклоняться ее тяготением и может сфокусироваться на нашем телескопе. При этом далекая звезда станет выглядеть ярче. Если же в роли гравитационной линзы окажется звезда с планетой, то явление будет двойным: на фоне пика яркости, вызванного звездой, появится пик яркости, вызванный планетой.

Для каждой планеты явление гравитационного линзирования уникально. Вероятность того, что его можно будет наблюдать еще раз, очень мала. Если орбитальная плоскость обнаруженной планеты ориентирована к нам ребром, то в принципе ее можно исследовать и в будущем, используя затмение. Этим методом можно находить далекие планеты, и это может быть лучшим способом обнаружить планеты земного размера.

А почему мы просто не смотрим на звезду в телескоп и не ищем рядом с ней планеты? Этот метод прямого изображения кажется простым, но на самом деле его очень трудно использовать из-за огромной разницы в яркости звезды и планеты. Для далекого наблюдателя наше Солнце ярче Юпитера примерно в миллиард раз. Чтобы снизить эффект ослепляющего света звезды, были разработаны изящные методы. Один из уже доказавших свою эффективность — вынос телескопа на орбиту, выше воздушного слоя, размывающего изображение. Способность космического телескопа разрешать малые углы ограничена в основном дифракцией световых волн. У космического телескопа «Хаббл» этот так называемый предел Рэлея для видимого света составляет 0,055". При таком разрешении, в принципе, можно увидеть раздельно Юпитер и Солнце с расстояния 95 пк (310 световых лет). Но на практике яркий свет звезды создает серьезные проблемы, поскольку он превосходит яркость планеты в 1 000 000 раз даже в первом дифракционном минимуме — наиболее выгодном положении планеты для ее обнаружения. В этом случае, чтобы зарегистрировать изображение планеты, потребовалась бы неделя драгоценного наблюдательного времени телескопа «Хаббл». Если основываться только на разрешении телескопа «Хаббл», то планету на такой орбите, как у Земли, можно было бы обнаружить с расстояния 18 пк. Но близкие к звезде планеты надежно прячутся в ее блеске. Планеты, далекие от звезды, легче увидеть, особенно если они большие и хорошо отражают свет. В тех немногих случаях, когда планеты обнаруживались непосредственно по их изображению, они располагались довольно далеко от своей звезды.

Европейская южная обсерватория (ESO) представила в 2007 году новый прибор для охоты за планетами — интегральный полевой спектрограф, разработанный под руководством Нираяна Тхатте. Он получает быструю последовательность изображений на разных длинах волн. В таких изображениях различные возмущающие эффекты меняются с изменением длины волны, но звезда и планета должны оставаться на одном и том же месте независимо от длины волны. Этот прибор будет использован на Очень Большом Телескопе (VLT ESO) в Чили. Сейчас VLT является самым передовым наземным телескопом: он имеет четыре 8,2-м инструмента, которые можно использовать как раздельно, так и вместе.

Эволюция Вселенной и происхождение жизни

Рис. 32.3. Первое изображение экзопланеты было получено в 2004 году группой под руководством Гаёля Шови, использовавшей 8,2-м телескоп VLT Yepun (ESO) с системой адаптивной оптики в инфракрасном диапазоне (см. рис. 1 на цветной вкладке). Центральная звезда 2М1207 — это тусклый коричневый карлик в созвездии Кентавр, невидимый невооруженным глазом. Слева от него планета, которая примерно в пять раз массивнее Юпитера. С разрешения ESO.

До сих пор большинство экзопланет было обнаружено с помощью наземных телескопов (рис. 32.3). Позже открытие некоторых из них подтвердил космический телескоп «Хаббл». Но в будущем ситуация изменится. В 2006 году был запущен космический телескоп COROT, созданный Французским космическим агентством (CNES) совместно с Европейским космическим агентством (ESA). Одной из его главных задач является поиск экзопланет методом покрытий — по уменьшению блеска звезды в момент прохождении перед ней планеты. Несколько новых планет он уже обнаружил.

С этой же целью в 2009 году запущен космический телескоп «Кеплер» (NASA), который также нашел уже несколько новых планет. Планируется еще ряд космических обсерваторий для поиска экзопланет (например, New Worlds Imager, Darwin, Space Interferometiy Mission, Terrestrial Planet Finder, PEGASE).

И наконец, косвенным методом для обнаружения экзопланет могут стать наблюдения пылевых дисков вокруг молодых звезд. В таких дисках иногда заметны кольцевые области, свободные от вещества. Вероятно, это те области, где формирующиеся или новорожденные планеты вычищают окрестности своей орбиты.

Параметры экзопланет.

Из-за сильного влияния наблюдательной селекции большая часть открытых до сих пор экзопланет — это газовые гиганты на довольно маленьких орбитах (почти у 40 % орбит размер большой полуоси <0,4 а. е.). Можно лишь удивляться, что первые открытые в массовом количестве планеты оказались именно того типа, который меньше всего ожидался по теоретическим соображениям.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию