Произошло чудо. Буль заглянул внутрь человеческого мозга и извлек из него два странноватых уравнения, показывающих, как работают понятия истинного и ложного. Транзисторы способны имитировать его уравнения, используя для этого просто-напросто камень. То есть получается, что некий полузабытый математик девятнадцатого столетия проложил путь к тому, что крупицы кремния начали использовать для точного копирования наших потаенных мыслей. Относительно оригинальной работы Буля см.: George Boole, «An Investigation of the Laws of Thought»
[15] (London: Dover Publications, 1995). Относительно Шеннона см. более подробно в главе «Understanding Information. Bit by Bit»
[16] в книге: «It Must Be Beautiful: Great Equations of Modem Science»
[17], edited by Graham Farmelo (London and New York: Granta Books, 2002).
C. 236 …несколько атомов примеси, фосфора, к примеру…
В действительности Бардин и Браттейн. введя в конце 1947-го фосфор в свои полупроводники, обнаружили, что последние вместо того, чтобы проталкивать вперед отрицательные электрические заряды, отталкивают назад положительные.
Бардин был озадачен: «Это противоречит всему, что можно было бы ожидать», — записал он в лабораторном журнале, — однако, если что-то работает, этим стоит заниматься. И вскоре он и Браттейн сообразили, что вместо введения в кремний атома с дополнительными, способными переносить ток электронами, они ввели атом, у которого электронов недоставало. И в их совершенной решетке появились дырки — впадины, в которых сидели новые атомы с незаполненной внешней электронной оболочкой.
Эти дырки начали заполняться электронами из других атомов, однако каждый из таких электронов, двигаясь вперед, оставлял сзади — там, где он находился прежде, — новую дырку. В дырки устремлялись новые электроны, и в результате по каменной кристаллической решетке начали распространяться именно они, дырки. Внутри кристалла кремния происходило направленное не вперед, а назад движение странных пустот. Получилось нечто прямо противоположное тому, чего хотели добиться исследователи, однако они нашли способ, позволявший добиться распространения дырок с одной стороны твердого вещества к другой. Это не было контролируемым переносом отрицательных электронов — тем, чего они добивались первоначально, — однако это работало! (На самом деле эксперименты велись не с кремнием, а с германием — «прорехи» во внешних атомных оболочках имеются у обоих, но работать с германием несколько проще.)
С. 236 Однако Ол и другие знали квантовую механику, достаточно хорошо…
Квантовые инженеры использовали и дополнительные представления о том, что электроны являются в такой же мере волнами, в какой и частицами. Это означает, что кристаллы кремния или германия насыщены электронными волнами, которые могут создавать препятствия для распространения других волн по всему пространству кристалла. Такие представления привели к возникновению зонной теории твердых тел. Вместо того чтобы рассматривать индивидуальные электроны одного атома и задаваться вопросом о том, крепко ли они привязаны к своему атому, или их все-таки можно от него оторвать, эта теория рассматривает всю совокупность электронов твердого тела и работает с аналоговыми свойствами этой совокупности.
Коллега Уотсона Уатта Арнольд Уилкинс знал, что суммарная активность большого числа электронов приводит к возникновению четко определенных зон проводимости — именно поэтому доквантовая картина Друда, в которой электроны рассматривались как переносчики электричества, была достаточно точной для проведения расчетов. По этой же причине Бардин и Браттейн могли говорить о «дырках», не имея при этом в виду, что некая реальная дырка действительно перескакивает от одного атома к другому. Указанные в руководстве по дальнейшему чтению тексты Эль-Хал или (Al-Khalili) и Полкингорна (Polkinghonie) содержат основные сведения по этой теме.
С. 238 …новых методов химического производства…
Профессора технических и компьютерных наук поколение за поколением вздыхают, в очередной раз читая в работах своих студентов, что сердцем транзисторной технологии является «гераний». Для того чтобы накрепко запомнить правильное название этого элемента, имеет смысл познакомиться с историей его открытия. После Франко-прусской войны 1870–1871 годов Франция и Германия питали друг к дружке лютую ненависть, поэтому, когда французский химик де Буабодран открыл в 1875-м новый, предсказанный Менделеевым элемент, он назвал его галлием. — по латинскому наименованию Франции. Когда же немецкий ученый Клеменс Александр Винклер открыл десять лет спустя еще один элемент, находившийся в таблице Менделеева прямо под кремнием и обладавший множеством общих с ним свойств, вопрос о том, как его назвать, попросту не стоял — германием, в честь одержавшей эту научную победу страны Винклера.
С. 238 …самому камушку никакого движения совершать не приходится… язычок металлического переключателя… Описанное представляет собой идею трехслойного транзистора. Внешние слои конфигурируются так, чтобы легко пропускать отрицательные заряды (эти слои содержат избыток электронов). Средний слой эти заряды блокирует. Однако, поскольку этот слой является полупроводником, характер его поведения легко изменить. Даже незначительное увеличение подаваемого на него тока приводит к его преобразованию, и он начинает пропускать заряды, поступающие из внешних слоев.
Отметьте сходство с дифференциальным микрофоном Эдисона. Батарейка современного слухового устройства постоянно пытается протолкнуть ток через средний слой транзистора, однако он трансформируется и начинает пропускать ток лишь при поступлении извне слабого звукового сигнала.
Если бы этот эффект осуществлялся один к одному, большого толка от транзистора не было, однако транзисторы обязаны своей великой силой огромной чувствительности среднего слоя, вследствие которой даже самые незначительные изменения голоса приводят к значительным преобразованиям этого слоя. Сигнал претерпевает огромное «усиление по мощности». и именно измерения этого усиления, проведенные в ноябре 1947 года, показали Браттейну и Бардину, что они на верном пути.
С. 241 …в последующие годы Хоппер любила объяснять…
Любила Хоппер и описывать тот день 1947 года, в который обнаружила ночную бабочку, закоротившую одну из схем компьютера, над которым она работала в Гарварде. «Найден первый реальный баг». — записала она рядом с останками бабочки, старательно сохраненными ею в регистрационном журнале. (Bug {англ.) — насекомое.) Термин этот от случая к случаю использовался для описания загадочных сбоев электрических схем едва ли не со времен Эдисона, однако благодаря видному положению, которое Хоппер занимала в Гарварде, плюс сохраненной ею улике слово «bug» стало повсеместно применяться как название неполадок в компьютере.