Величайшие математические задачи - читать онлайн книгу. Автор: Йен Стюарт cтр.№ 2

читать книги онлайн бесплатно
 
 

Онлайн книга - Величайшие математические задачи | Автор книги - Йен Стюарт

Cтраница 2
читать онлайн книги бесплатно

Помимо научного значения, успешное доказательство теоремы Ферма связано с интереснейшей жизненной историей. В 10 лет Эндрю Уайлс так заинтересовался этой проблемой, что решил стать математиком и обязательно решить ее. Он выполнил первую часть плана и даже выбрал своей специализацией теорию чисел — обширную область математики, к которой относится и Великая теорема Ферма. Однако чем больше он узнавал о математике, тем труднее казалось выполнить задуманное. Теорема Ферма — загадочная диковинка, обособленный вопрос из разряда тех, которые умеет задавать любой специалист по теории чисел (ведь для этого не нужно никаких доказательств). Она не укладывается ни в одну систему мощных доказательных средств. Великий Гаусс в письме к Генриху Ольберсу попросту отмахнулся от нее, заметив, что эта проблема «мне не особенно интересна, поскольку легко можно сформулировать множество подобных утверждений, которые никто не может ни доказать, ни опровергнуть». Уайлс решил, что его детская мечта неосуществима, и отложил теорему Ферма в долгий ящик. Однако затем, будто по волшебству, другие математики совершили прорывное открытие, неожиданно связавшее теорему со стержневой темой теории чисел, причем именно той, которой и занимался Уайлс. Гаусс, как оказалось, в свое время недооценил значение этой проблемы, что для него вообще-то было нехарактерно; он не подозревал, что она может быть связана с глубокой, но на первый взгляд достаточно далекой областью математики.

Теперь, когда связь была установлена, Уайлс мог работать над загадкой Ферма и одновременно проводить значимые исследования в рамках современной теории чисел. Даже если с доказательством Великой теоремы ничего бы не получилось, все, что удалось открыть в ходе исследований, было бы достойно публикации. Так что старые наработки были извлечены на свет божий, и Уайлс начал всерьез обдумывать проблему. Через семь лет усердных трудов (а работал он втайне от ученого сообщества, что для математиков совсем не характерно) Уайлс пришел к выводу, что решение найдено. На престижной конференции по теории чисел он прочел серию лекций под невнятным названием, которое никого не обмануло. Новость разлетелась и произвела сенсацию, причем не только в академических кругах, но и в средствах массовой информации. Теорема Ферма доказана!

Полученное Уайлсом доказательство, полное оригинальных идей, оказалось красивым и элегантным. К несчастью, специалисты вскоре обнаружили в его логике серьезный пробел. Как это ни печально, при решении великих (и обычно очень известных) математических задач такое происходит сплошь и рядом, и, как правило, для очередного доказательства такой поворот событий оказывается роковым. Однако на этот раз судьба была благосклонна: при помощи бывшего своего ученика Ричарда Тейлора Уайлсу удалось ликвидировать пробел, исправить доказательство и завершить работу. Эмоциональное напряжение этого момента очень хорошо видно на экране: пожалуй, это единственный случай, когда ученый-математик расплакался перед камерой при одном только воспоминании о тех драматических событиях и последовавшем за ними триумфе.

Вы, наверное, заметили, что я так и не рассказал вам, в чем, собственно, заключается Великая теорема Ферма. Я сделал (или, вернее, не сделал) это намеренно: о самой теореме речь пойдет в свое время. Ведь успех телепередачи с сутью теоремы почти не связан. Мало того, математики никогда не придавали особого значения тому, верна ли теорема, которую Ферма небрежно набросал на полях книги, или нет. От ответа на этот вопрос ничего особенно важного не зависит. Откуда же такой интерес к нему? Все очень просто. Огромное значение может иметь именно то, что все математическое сообщество было не в состоянии найти этот ответ. И дело вовсе не в самоуважении: это означало, что в существующих математических теориях не хватает чего-то принципиально важного. К тому же теорема очень просто формулируется, и это добавляет загадочности всей ситуации. Как может что-то настолько на первый взгляд простое оказаться таким сложным?

Математиков не слишком заботил ответ на вопрос, поставленный Ферма, зато глубоко заботил тот факт, что они ответа не знают. К тому же им хотелось найти метод решения этой проблемы, поскольку он, по идее, должен был пролить свет не только на вопрос Ферма, но и на множество других вопросов. Опять же так нередко случается с математическими загадками: методы, использованные для их решения, часто важнее результатов. Разумеется, иногда результат тоже важен — все зависит от его следствий.

Доказательство Уайлса слишком сложно для телепередачи, разобраться в нем могут только специалисты. В нем есть математическая красота и интрига, как мы убедимся в свое время, но любая попытка объяснить что-то подобное по телевизору привела бы к немедленной потере интереса у большей части аудитории. Поэтому программа разумно сосредоточилась на более личном вопросе: каково это — решить математическую проблему, известную своей сложностью и влекущую за собой целый шлейф исторических ассоциаций? Телезрителям показали, что существует небольшая, но увлеченная группа математиков, разбросанных по всему миру, что все они глубоко погружены в предмет своих исследований, общаются друг с другом, следят за последними разработками и вообще посвящают значительную часть жизни продвижению математических знаний. Создатели фильма очень живо показали эмоциональную вовлеченность и социальное единство этих людей. Это не разумные автоматы, а реальные люди, любящие свое дело. В этом и заключается главный посыл фильма.

Мы можем сформулировать три основные причины успеха этой программы: серьезная и известная проблема, герой с увлекательной, по-человечески интересной историей и группа поддержки — целая каста эмоционально вовлеченных в процесс людей. Но я подозреваю, что существует и четвертая причина, не столь явная. Люди, не связанные с математикой, по многим объективным причинам редко слышат о новых достижениях в этой области, да и не так уж сильно интересуются этим. В газетах лишь изредка упоминается что-нибудь связанное с математикой, а если и упоминается, то лишь приводятся какие-то отрывочные или тривиальные факты. Наконец, действия и достижения математиков где-то там за кулисами не оказывают, на первый взгляд, никакого влияния на повседневную жизнь. А школьная математика зачастую предстает перед учащимися как уже закрытая книга, где на каждый вопрос есть готовый ответ. Школьникам обычно кажется, что ничего нового в математике днем с огнем не сыщешь.

Если смотреть под таким углом зрения, то главное в достижении Уайлса — не то, что Великая теорема Ферма была доказана, а то, что наконец-то в математике свершилось хоть что-то новое. Поскольку на поиск доказательства теоремы у ученых ушло больше 300 лет, многие зрители восприняли открытие Уайлса как первое существенное достижение в математике за весь этот период. Я не говорю, что все действительно именно так и решили. Понятно, что подобная позиция рассыпалась бы в прах при первом же очевидном вопросе вроде: «Почему правительство тратит немалые деньги на финансирование университетских математических исследований?» Но на подсознательном уровне все сочли, что это именно так, не задаваясь вопросами и не размышляя. Поэтому достижение Уайлса приобрело в глазах нематематиков еще большие масштабы.

Одна из целей этой книги — наглядно продемонстрировать всем, в том числе и неспециалистам, что математика сейчас на подъеме, а новые открытия в ней — совсем не редкость. Вы почти ничего об этом не слышите просто потому, что большая часть математических работ слишком сложна для неспециалистов, а средства массовой информации с опаской относятся к интеллектуалам и боятся публиковать что-либо сложнее «X-фактора». Кроме того, практическое приложение математики обычно скрыто от глаз потребителя, причем зачастую намеренно, чтобы не волновать его. «Что? Работа моего айфона построена на математических формулах? Но у меня же по математике всегда была пара! Как я буду входить в “Фейсбук”?»

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию