Несмотря на все эти оговорки, сердцем я заодно с физическими фундаменталистами. Я хотел бы увидеть Теорию Всего и был бы в восторге, если бы она оказалась математической, прекрасной и истинной. Полагаю, что и люди религиозные высказали бы свое одобрение, поскольку они могли бы интерпретировать ее как доказательство наличия изысканного вкуса и развитости мышления их божества.
Сегодняшние поиски Теории Всего уходят корнями в первые попытки объединить электромагнетизм и общую теорию относительности, в то время заключавшие в себе всю известную физику. Эта попытка была предпринята всего через четырнадцать лет после первой статьи Эйнштейна о специальной теории относительности, восемь лет после его предсказания, что гравитация отклоняет лучи света, и через четыре года после того, как законченная общая теория относительности была представлена замершему в напряженном ожидании миру. Попытка эта была столь хороша, что вполне могла бы перенаправить развитие физики на совершенно новый путь, однако, к несчастью для ее автора, его работа совпала по времени с тем, что направило развитие физики на новый путь, — с квантовой механикой. В последовавшей затем «золотой лихорадке» физики потеряли интерес к объединенным теориям поля; мир квантов обещал куда более богатый урожай и гораздо более высокие шансы совершить значительное открытие. Потребовалось шестьдесят лет, чтобы идея, лежавшая в основе той первой попытки, вернулась к жизни.
Все началось в Кенигсберге, в то время — столице немецкой провинции Восточная Пруссия. Кенигсберг — ныне Калининград, административный центр российского анклава, лежащего между Польшей и Литвой. Необычное влияние этого города на развитие математики началось с головоломки. Через Кенигсберг протекает река Прегель (ныне — Преголя), и семь мостов некогда соединяли два берега реки друг с другом и с двумя островами
[77]. Существует ли такой путь, который позволил бы жителям Кенигсберга пройти по всем мостам, одному за другим, но при этом не прошагать ни по одному мосту дважды? Леонард Эйлер разработал общую теорию таких задач (из которой следовало, что в данном случае ответ — «нет»), тем самым сделав один из первых шагов в области математики, сейчас называемой топологией. Топология занимается геометрическими свойствами, которые остаются неизменными, когда форма подвергается изгибам, скручиванию, сдавливанию, сплющиванию и всякого рода деформации, лишь бы она оставалась непрерывной — запрещается только делать разрывы и разрезы и склейки.
Топология стала одной из наиболее мощных областей в современной математике со множеством применений в физике. Она сообщает нам о возможных формах многомерных пространств, что становится все более важным как в космологии, так и в физике частиц. В космологии желательно знать форму пространства-времени на максимально больших масштабах, т.е. на масштабах всей вселенной. В физике частиц желательно знать форму пространства и времени на малых масштабах. Можно подумать, что ответ очевиден, однако физики более так не считают. И их сомнения также родились в Кенигсберге.
В 1919 году никому не известный математик из Кенигсбергского университета Теодор Калуца выдвинул очень странную идею. Он записал ее и послал Эйнштейну, который, по-видимому, при получении письма потерял дар речи. Калуца нашел способ соединить гравитацию и электромагнетизм в рамках одной последовательной «объединенной теории поля» типа той, которую в течение многих лет пытался, но без особого успеха, построить Эйнштейн. Теория Калуцы была очень изящна и естественна. Беспокойство вызывало только одно обстоятельство: объединение требовало, чтобы у пространства-времени было не четыре измерения, а пять. Время, как всегда, оставалось временем, но пространство некоторым образом приобретало четвертое измерение.
Калуца не ставил своей целью объединить гравитацию и электромагнетизм. По какой-то причине, о которой лучше всего было бы спросить у него самого, он возился с пятимерной гравитацией в качестве некой математической разминки, пытаясь понять, как будут выглядеть полевые уравнения Эйнштейна, если пространство приобретет эту нелепую дополнительную размерность.
В размерности четыре уравнения Эйнштейна содержат десять компонент — в том смысле, что они сводятся к десяти отдельным уравнениям, описывающим десять различных чисел. Эти числа все вместе составляют метрический тензор, который описывает кривизну пространства-времени. В размерности пять имеются пятнадцать компонент и, таким образом, пятнадцать уравнений. Десять из них воспроизводят стандартную четырехмерную теорию Эйнштейна, что и неудивительно; четырехмерное пространство-время вкладывается в пятимерное пространство-время, так что естественно было бы ожидать, что четырехмерный вариант гравитации вкладывается в пятимерный. А что насчет оставшихся пяти уравнений? Они могли бы оказаться какой-нибудь вещью в себе, не имеющей никакой ценности для нашего мира. Но дело обстоит по-другому. Они оказались нашими давними знакомыми, что и изумило Эйнштейна. Четыре из оставшихся уравнений Калуцы были в точности уравнениями Максвелла для электромагнитного поля — теми самыми, которые выполнены в нашем четырехмерном пространстве-времени.
Одно остающееся уравнение описывало частицы очень простого вида, игравшие незначительную роль. Но никто, и менее всех Калуца, не ожидал, что и теория гравитации Эйнштейна, и теория электромагнетизма Максвелла сами собой возникнут из пятимерного аналога одной только гравитации. Вычисления Калуцы, казалось, говорили, что свет представляет собой колебания в дополнительном, скрытом измерении пространства. Гравитацию и электромагнетизм оказалось возможным соединить друг с другом таким образом, что не было заметно никаких швов, — но только ценой предположения, что пространство на самом деле четырехмерно, а пространство-время пятимерно.
Эйнштейн никак не мог принять решения по поводу статьи Калуцы, поскольку не было никаких причин считать, что пространство-время имеет дополнительное измерение. Но в конце концов он счел, что, сколь бы странной эта идея ни казалась, она была красива и потенциально обладала столь далеко идущими следствиями, что ее стоило опубликовать. После двух лет колебаний Эйнштейн рекомендовал статью Калуцы к публикации в ведущем физическом журнале. Статья называлась «О единстве физических проблем»
[78].