Истина и красота. Всемирная история симметрии - читать онлайн книгу. Автор: Йен Стюарт cтр.№ 74

читать книги онлайн бесплатно
 
 

Онлайн книга - Истина и красота. Всемирная история симметрии | Автор книги - Йен Стюарт

Cтраница 74
читать онлайн книги бесплатно

Одновременно Эндрю Кроммлин из Гринвичской обсерватории возглавил вторую экспедицию в Собрал в Бразилии [74]. Оба отряда наблюдали звезды вблизи края солнечного диска во время полного солнечного затмения и обнаружили легкие сдвиги в кажущихся положениях звезд, согласующиеся с предсказанием Эйнштейна, но не с предсказанием ньютоновской механики.


Эйнштейн, проснувшийся знаменитым, послал своей матери открытку такого содержания: «Дорогая мама, сегодня радостная новость. X.А. Лоренц телеграфировал, что английские экспедиции действительно доказали отклонение света Солнцем». Дирак заглотил наживку: «Меня захватило всеобщее возбуждение, вызванное теорией относительности. Мы постоянно об этом говорили. Студенты обсуждали ее между собой, однако имелось слишком мало точной информации для того, чтобы двигаться дальше». Общественное знание о теории относительности по большей части сводилось к словам; философы утверждали, что они уже многие годы знали, что «все на свете относительно», и выказывали пренебрежение к новой физике, как к старой шляпе. К сожалению, они лишь выставляли напоказ свое невежество и легковерность, с которой они переняли некорректную терминологию.

Поль сходил на несколько лекций по теории относительности, прочитанных Чарли Броудом, который в то время был профессором философии в Бристоле, но математическое содержание этих лекций его не удовлетворило. В конце концов он купил экземпляр эддингтоновской книги «Пространство, время и тяготение» и самостоятельно освоил необходимые разделы математики и физики. Еще до своего отъезда из Бристоля он досконально изучил и специальную, и общую теории относительности.


Полю хорошо давалась теория, зато лабораторные работы были для него кошмаром. Позднее физики стали говорить об «эффекте Дирака»: стоило только ему войти в лабораторию, как все эксперименты там начинали выходить из-под контроля. Мир инженерных наук для него означал бы катастрофу. Он получил блестящий диплом, но некоторое время оставался безработным, поскольку это было время послевоенной экономической депрессии. По счастью, ему представилась возможность изучать математику в Бристольском университете, причем за обучение уже было заплачено, и он ухватился за этот шанс. Его специализацией стала прикладная математика.

В 1923 году Поль стал аспирантом в Кембриджском университете, где столкнулся с серьезными проблемами из-за своей застенчивости. Он не интересовался никакими видами спорта, неохотно заводил друзей и всячески избегал женщин. Время он проводил главным образом в библиотеке. Еще в 1920 году он проработал все лето на той же фабрике, что и его брат Реджинальд. Два брата периодически встречались на улице, но часто проходили друг мимо друга, не останавливаясь, чтобы перекинуться парой слов, — настолько укоренилась семейная привычка к молчанию.

Поль быстро стал заметной фигурой; за шесть месяцев исследований он написал свою первую научную работу. Бурным потоком за ней последовали другие. Именно тогда, в 1925 году, он и столкнулся с квантовой механикой. Во время одной из долгих осенних прогулок по окрестностям Кембриджа он вдруг задумался о гайзенберговских «списках». Они представляют собой матрицы, а матрицы не коммутируют [75] — обстоятельство, которое изначально не давало покоя Гайзенбергу. Дираку была известна идея Ли, что в такой ситуации важную роль играет не произведение AB, а коммутатор AB − BA, и он всерьез заинтересовался захватывающей идеей, что некий весьма похожий объект имеется в гамильтоновом формализме описания механики, где он называется скобкой Пуассона. Но Дирак никак не мог вспомнить соответствующую формулу.

Мысли об этом занимали его почти всю ночь, а на утро он «поспешил в одну из библиотек, прямо к моменту ее открытия, и там посмотрел в уитгекеровской „Аналитической динамике“, как выглядит скобка Пуассона; оказалось, это было именно то, что требовалось». Его открытие состояло вот в чем: коммутатор двух квантовых матриц равен скобке Пуассона соответствующих классических переменных, умноженной на постоянную, равную ih/(2π). Здесь h — постоянная Планка, i — это √−1, а π — ну, это, конечно, π.

Это было впечатляющее открытие. Оно говорило физикам, как надо превращать классические механические системы в квантовые. Стоящая за этим математика была необычайно элегантна — она соединяла две глубокие, но до того момента никак не связанные теории. На Гайзенберга это произвело впечатление.

Вклад Дирака в квантовую теорию разнообразен, и я выберу лишь одно из высших его достижений — релятивистскую теорию электрона, создание которой относится к 1927 году. К тому времени теоретики, занимавшиеся квантовой физикой, знали, что электроны обладают спином, который представляет собой нечто аналогичное моменту вращения мячика вокруг своей оси, однако характеризуется некоторыми весьма странными свойствами, которые делают эту аналогию далеко не полной. Если взять вращающийся мячик и повернуть систему на полные 360°, то и мяч, и момент его вращения окажутся в тех же положениях, которые они занимали до поворота. Однако если вы сделаете то же самое с электроном, то спин его изменит свой знак. Чтобы спин вернулся в первоначальное положение, поворачивать надо на 720°.

Это в действительности довольно сильно напоминает кватернионы, интерпретация которых как «вращений» пространства включает тот же выверт. На математическом языке, вращения пространства образуют группу SO(3), но соответствующая группа в случае кватернионов, как и в случае электронов, есть SU(2). Эти две группы почти одинаковы, только SU(2) «в два раза больше» — она в некотором смысле построена из двух экземпляров группы SO(3). Такое явление называется «двулистным накрытием», из-за чего вращение на 360° и отвечает вращению на удвоенный угол.

Дирак не использовал кватернионы, да и группами не пользовался. Но в конце 1927 года, к наступлению Рождества, он предложил свои спиновые матрицы, которые играют ту же самую роль. Позднее математики обобщили матрицы Дирака на спиноры, которые оказались очень важными в теории представлений групп Ли.

Спиновые матрицы позволили Дираку сформулировать релятивистскую квантовую модель электрона. Из модели получалось все, ради чего она создавалась, и даже немного больше. Наряду с ожидаемыми решениями с положительной энергией она предсказывала решения с отрицательной энергией. Анализируя это парадоксальное свойство, Дирак в конце концов, отбросив несколько неудачных идей, пришел к концепции «антиматерии» — т.е. к идее о том, что всякая частица имеет соответствующую античастицу с той же массой, но с противоположным зарядом. Античастица электрона представляет собой позитрон; он не был известен, пока Дирак не предсказал его существование.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию