Истина и красота. Всемирная история симметрии - читать онлайн книгу. Автор: Йен Стюарт cтр.№ 69

читать книги онлайн бесплатно
 
 

Онлайн книга - Истина и красота. Всемирная история симметрии | Автор книги - Йен Стюарт

Cтраница 69
читать онлайн книги бесплатно

По счастью, молодого адресата рекомендация фон Йолли не отпугнула. Он заявил, что у него нет желания открывать новое — все, чего он хочет, сводится к развитию лучшего понимания известных оснований физики. В поисках такого понимания он произвел одну из двух величайших революций в физике двадцатого столетия и развеял второе из Кельвиновых облаков. Этого человека звали Макс Планк.


Юлиус Вильгельм Планк был профессором права в Киле и Мюнхене. И его отец, и мать были профессорами теологии, а брат — судьей. Так что, когда его вторая жена Эмма Патциг осчастливила его сыном — шестым ребенком, — было заранее ясно, что мальчику предстоит вырасти в интеллектуальной среде. Макс Карл Эрнст Людвиг Планк появился на свет 23 апреля 1858 года.

Европа, как обычно, находилась в состоянии политических неурядиц, и в самых ранних воспоминаниях мальчика сохранился вступление в Киль прусских и австрийских войск во время Датско-Прусской войны 1864 года.

К 1867 году Планки перебрались в Мюнхен, где образование Макса проходило под руководством математика Германа Мюллера в Школе короля Максимилиана. Мюллер учил мальчика астрономии, механике, математике и основам физики, в частности — закону сохранения энергии. Планк был превосходным учеником и закончил учебу необычно рано, в шестнадцатилетнем возрасте.

Кроме того, он был еще и способным музыкантом, однако, несмотря на высказанный с самыми добрыми намерениями совет Йолли, все же решил изучать физику. Планк занимался под руководством Йолли кое-какими экспериментами, но быстро переключился на теоретическую физику. Он познакомился с несколькими физиками и математиками, занимавшими ведущее положение в мире, и в 1877 году переехал в Берлин, где продолжил свое обучение у Гельмгольца, Густава Кирхгоффа и Вейерштрасса. В 1878 году он успешно сдал свои первые экзамены, а в 1879-м защитил диссертацию по термодинамике. В течение некоторого времени он преподавал математику и физику в своей старой школе. В 1880 году он защитил диссертацию на право преподавания в университете, темой которой были равновесные состояния тел при различных температурах, и перед ним открылись перспективы академической карьеры. Со временем он получил соответствующую должность, однако это произошло лишь в 1885 году, когда он стал доцентом в университете в Киле. Его научные интересы были сосредоточены на термодинамике, в особенности на концепции энтропии.

Макс познакомился с Мари Мерк, сестрой одного из своих друзей, и в 1887 году они поженились и стали снимать квартиру. Всего у них было четверо детей: Карл, близнецы Эмма и Грета, а также Эрвин.

В 1889 году — в том самом году, когда родились близнецы — Макс получил в Берлине должность, которую ранее занимал Кирхгофф, а в 1892 году стал полным профессором. Семейство переехало на виллу в берлинском районе Грюневальд, по соседству с другими выдающимися представителями академической среды. Один из них, теолог Адольф фон Харнак, стал близким другом Планков. Планки были общительной семьей, и дома у них регулярно бывали знаменитые интеллектуалы, включая Эйнштейна и физиков Отто Гана и Лизе Майтнер, которые позднее совершили фундаментальные открытия в области деления атомного ядра, послужившие частью долгого пути к созданию атомной бомбы и атомных электростанций. Когда в доме Планков бывали гости, там по заложенной Гельмгольцем традиции исполнялась музыка.

В течение некоторого времени жизнь была безоблачна; но Мари заразилась легочной инфекцией — возможно, туберкулезом — и умерла в 1909 году. Через полтора года, в возрасте пятидесяти двух лет, Макс снова женился — его супругой стала Марга фон Хесслин, родившая ему третьего сына — Германа.


В 1894 году местная электрическая компания пыталась разработать более эффективную лампочку накаливания, так что Макс занялся некоторыми исследованиями по контракту для промышленности. В принципе анализ лампы накаливания представлял собой стандартную физическую задачу, известную как «излучение черного тела», — задачу о том, как излучался бы свет, испущенный полностью неотражающим телом. Такое тело при нагревании излучает свет на всех частотах, но интенсивность света, или, что эквивалентно, его энергия, зависит от частоты. Спрашивалось, как частота влияет на интенсивность. Без ответа на этот фундаментальный вопрос трудно было бы изобрести более эффективную лампочку.

Имелись твердо установленные экспериментальные результаты, а также один теоретический — закон Релея-Джинса, полученный из основополагающих принципов классической физики. К сожалению, этот закон не согласовывался с результатами экспериментов, проводимых для высокочастотного излучения. Он даже предсказывал нечто невозможное: по мере возрастания частоты света его энергия должна становиться бесконечно большой. Этот невозможный результат получил известность как «Ультрафиолетовая катастрофа». Дальнейшие эксперименты привели к формулировке нового закона, который был получен подгонкой под наблюдения за высокочастотным излучением и известен как закон Вина по имени его открывателя Вильгельма Вина.

Однако закон Вина был непригоден для низкочастотного излучения.

Физикам приходилось иметь дело с двумя законами: один из них работал на низких частотах, но не работал на высоких, а другой — в точности наоборот. Планк задался идеей построить интерполяцию между ними — другими словами, записать математическое выражение, которое на низких частотах переходило бы в закон Релея-Джинса, а на высоких — в закон Вина. В результате возникла формула, которую теперь называют законом Планка для излучения черного тела.

Этот новый закон был сознательно устроен таким образом, чтобы прекрасно отвечать экспериментальным наблюдениям во всем спектре электромагнитного излучения [64], однако он был чисто эмпирическим — т.е. выведенным из эксперимента, а не из каких-либо фундаментальных физических принципов. Планка, действовавшего в согласии со своим намерением лучше понять известные законы физики, это не устраивало, и он потратил значительные усилия на поиск физических принципов, которые могли бы привести к написанной им формуле.

В 1900 году Планк наконец заметил любопытное свойство своей формулы. Ее можно было вывести, практически повторяя вычисления, которые приводили к закону Релея-Джинса, если только сделать там одно маленькое изменение. В классическом выводе предполагалось, что для любой заданной частоты энергия электромагнитного излучения может в принципе принимать любое — какое угодно — значение. В частности, она может приближаться к нулю сколь угодно близко. Планк осознал, что именно это предположение и было причиной ультрафиолетовой катастрофы и что если бы было сделано другое предположение, то проблемы с появлением бесконечности в вычислениях не возникало бы.

Правда, спасительное предположение носило радикальный характер. Требовалось, чтобы энергия излучения на заданной частоте складывалась только из целого числа «пакетов» фиксированного размера. При этом требовалось, чтобы размер каждого пакета был пропорционален частоте, другими словами — равным частоте, умноженной на некоторую постоянную величину; эту постоянную мы сейчас называем постоянной Планка и обозначаем символом h.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию