Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - читать онлайн книгу. Автор: Джон Дербишир cтр.№ 33

читать книги онлайн бесплатно
 
 

Онлайн книга - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике | Автор книги - Джон Дербишир

Cтраница 33
читать онлайн книги бесплатно

На самом деле все даже еще интереснее. Возьмем любое положительное целое число, скажем, 9. Как много чисел, меньших, чем 9, не имеют общего делителя с девяткой (единица не считается за делитель)? Таких чисел шесть — это 1, 2, 4, 5, 7, 8. Будем по очереди брать каждое из них и последовательно прибавлять к нему девятку.

1: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127
2: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128…
4: 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130…
5: 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131
7: 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133…
8: 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134…

Каждая из этих шести последовательностей содержит не просто бесконечно много простых чисел (выделены жирным), но и одну и ту же долю простых чисел. Другими словами, представим себе, что последовательности продолжены до окрестности какого-то очень большого числа N, а не просто до окрестности числа 134; тогда каждая последовательность будет содержать примерно одно и то же количество простых чисел, причем если верна Теорема о распределении простых чисел, то около 1/6(N∙ln N) (впрочем, эта теорема еще не была доказана во времена Дирихле). Если N — это 134, то 1/6(N∙ln N) составляет около 4,55983336…. Приведенные выше шесть последовательностей содержат 5, 5, 4, 5, 4 и 5 простых чисел, что дает среднее 4,6666… — на 2,3 процента больше, чем утверждается, что совсем неплохо для такой маленькой выборки.

Для доказательства своего результата Дирихле начал с арифметики в той форме, в какой она была подробно развита Гауссом в Disquisitiones Arithmeticae. Математики называют ее «арифметикой сравнений». Ее можно представлять себе как арифметику циферблата. Временно заменим 12 на циферблате часов на 0. Двенадцать часовых отметок на циферблате теперь имеют вид 0, 1, 2, 3, …, 11. Если времени сейчас восемь часов, а вы прибавите 9 часов, то что получится? Ага, вы получите пять часов. В данной арифметике, таким образом, 8 + 9 ≡ 5. Или, как это выражают математики, 8 + 9 ≡ 5 (mod 12), что читается как «девять плюс восемь сравнимо с пятью по модулю 12». Фраза «по модулю двенадцати» означает «я определяю результаты по циферблату с 12 часовыми отметками, от 0 до 11». Это может показаться тривиальным, но в действительности арифметика сравнений уходит очень глубоко и полна странных и трудных результатов. Гаусс был в ней великим гроссмейстером; ни одна из семи глав Disquisitiones Arithmeticae не обходится без знака ≡.

Не забудем, что Disquisitiones была постоянным спутником Дирихле в его молодые годы. Когда он приступил к упомянутой выше задаче в 1836 или 1837 году, ему было уже тридцать с небольшим лет, и к тому времени он не раз уже проштудировал работу Гаусса по сравнениям. Затем каким-то образом в поле его зрения попал результат Эйлера 1737 года — Золотой Ключ. Это и дало ему подсказку. Он соединил две вещи вместе, применил некоторые элементарные методы анализа и получил свое доказательство.


IX.

Дирихле, таким образом, был первым, кто подобрал Золотой Ключ — связующее звено между арифметикой и анализом — и всерьез воспользовался им. Однако (если продолжить ту аналогию, которую я здесь развиваю) утверждение о том, что он еще и повернул ключ, было бы некоторым преувеличением. Скорее я бы сказал, что он его взял, оценил его красоту и потенциальную мощь, затем отложил его в сторону, но использовал как образец для другого похожего ключа — серебряного, можно сказать, — чтобы отпереть дверь, ведущую к стоявшей перед ним конкретной проблеме. Великое соединение — аналитическая теория чисел — появилось во всем своем великолепии лишь 22 года спустя, в работе Римана 1859 года.

Вспомним, однако, что Риман был одним из учеников Дирихле и, без сомнения, знал о его работах. Действительно, в первом же абзаце своей статьи 1859 года он упоминает Дирихле вместе с Гауссом. Они были двумя его математическими кумирами. Если Риман повернул ключ, то Дирихле сначала показал ему этот ключ и продемонстрировал, что он в самом деле может что-то отпереть; и именно Дирихле заслуженно принадлежит бессмертная слава создания аналитической теории чисел.

Но что же представляет собой этот Золотой Ключ? Что именно оставил Леонард Эйлер, работая в своей комнате наедине со свечой, когда по улицам Санкт-Петербурга пробирались тайные агенты Бирона, что именно оставил он — для того чтобы через сто лет это нашел Дирихле?

Глава 7. Золотой Ключ и улучшенная Теорема о распределении простых чисел

I.

Внимательный читатель уже, должно быть, заметил, что математические главы этой книги развиваются по двум основным колеям. Главы 1 и 5 были целиком посвящены различным бесконечным рядам, приводящим к математическим объектам, которые Риман назвал дзета-функцией. А в главе 3, посвященной простым числам, отталкиваясь от заглавия работы Римана 1859 года, мы рассмотрели Теорему о распределении простых чисел (ТРПЧ). Эти два предмета — дзета-функция и простые числа, — очевидно, связны в силу того интереса, который к ним проявлял Риман. В самом деле, определенным образом связав одну концепцию с другой и повернув Золотой Ключ, Риман открыл целую область аналитической теории чисел. Но как он это сделал? Какова связь? Что именно представляет собой Золотой Ключ? В данной главе я намерен ответить на этот вопрос — предъявить вам Золотой Ключ. После этого мы начнем готовиться к повороту Золотого Ключа, рассмотрев улучшенный вариант ТРПЧ.


II.

Начинается все с «решета Эратосфена». Золотой Ключ по существу представляет собой способ, которым Леонард Эйлер сумел выразить решето Эратосфена в терминах анализа.

Эратосфен из Кирены (в настоящее время — городок Шаххат в Ливии) был одним из библиотекарей великой александрийской библиотеки. Около 230 года до P.X. — примерно через 70 лет после Эвклида — он разработал свой знаменитый метод решета для нахождения простых чисел.

Работает этот метод следующим образом. Сначала выпишем все целые числа, начиная с 2. Разумеется, нельзя выписать их все, поэтому остановимся на сотне с небольшим.

2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61

62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 90 91

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию