Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - читать онлайн книгу. Автор: Геннадий Горелик cтр.№ 48

читать книги онлайн бесплатно
 
 

Онлайн книга - Кто изобрел современную физику? От маятника Галилея до квантовой гравитации | Автор книги - Геннадий Горелик

Cтраница 48
читать онлайн книги бесплатно

Космологическая теория безусловно подвергнется еще многим изменениям. Прежде всего ей придется расширить свои сроки, которые все же чрезвычайно стеснительны для космогонистов.

Бронштейн в своем обзоре не упомянул гипотезу старения фотонов, выдвинутую астрономом Цвикки для объяснения красного смещения. Предположенное в той гипотезе взаимодействие света с межгалактическим веществом не выдерживало астрофизической критики. Гипотеза привлекала тех, кому «понятный» малый эффект был милее грандиозной и непонятной картины Вселенной, разлетающейся во все стороны.

Ситуация изменилась пару лет спустя, когда новый механизм старения фотонов предложили физики с переднего края фундаментальной теории. Теперь речь шла о покраснении фотонов в результате их взаимодействия не с веществом, а с… пустотой. Тогдашние физики поняли, что пустота — это не просто пустое пространство, а квантовый вакуум, в котором идет своя незаметная жизнь — незаметная лишь «невооруженному глазу»: спонтанно возникают и очень быстро исчезают пары электронов и только что открытых позитронов — анти-электронов. В 1933 году появилась гипотеза, что фотон, взаимодействующий с такими виртуальными парами, отщепляет от себя маленькие фотончики и постепенно уменьшает свою энергию — «краснеет». При этом покраснение пропорционально расстоянию, проходимому фотоном через вакуум, что и дало бы соотношение Хаббла.

Это новое слово фундаментальной физики заслуживало рассмотрения. Однако настоящей теории электрон-позитронного вакуума еще не было, так что прямой расчет был уязвим. Бронштейн нашел изящный общий способ проверить гипотезу. Он показал, что, независимо от механизма гипотетического расщепления фотона, из принципа относительности следует вполне определенная связь вероятности распада фотона и его частоты. Соответствующее покраснение различалось бы в разных частях спектра, в отличие от эффекта Доплера и соотношения Хаббла. Так главный наблюдательный факт тогдашней космологии получил фундаментальное обоснование.

При этом осталась и проблема малого возраста Вселенной. С этим справились сами астрономы двадцать лет спустя, уточнив многоступенчатую шкалу расстояний, на которую опирался Хаббл. Первой ступенью этой шкалы была оценка расстояния до ближайших цефеид. Уточнение привело к тому, что шкала расстояний и, соответственно, шкала времени удлинилась в семь раз, устранив вопиющую внешнюю проблему космологии — неувязку возраста Вселенной и возраста Земли.

Оставалась, однако, глубокая внутренняя проблема космологии — проблема начала расширения.

Три фундаментальные константы c, G и h

На космологию и на передний край физики Бронштейн смотрел, можно сказать, свысока — с такого высока, откуда видно «отношение физических теорий друг к другу и к космологической теории». Так он назвал раздел в статье 1933 года «К вопросу о возможной теории мира как целого». В размышлениях об этом вопросе, привлекая историю физики и «географию» применимости разных теорий, он опирался на особую роль трех физических констант: c, G и h — скорость света, гравитационная постоянная и постоянная Планка. Константы эти входят в формулировки фундаментальных теорий, необходимых, в принципе, для описания любого физического явления. Ими можно пренебречь лишь из практических соображений, если не нужна слишком высокая точность. Константы c, G и h можно назвать фундаментальными, встроенными в фундамент мироздания. Но так было не всегда.

Скорость света c, введенная Галилеем и измеренная Ремером еще в семнадцатом веке, стала фундаментальной лишь в 1905 году в теории относительности. Гравитационная постоянная G, фактически измеренная Кавендишем в конце восемнадцатого века, а вошедшая в физику в начале девятнадцатого, обрела фундаментальность в теории гравитации-пространства-времени, завершенной в 1916 году. А постоянная h, введенная Планком в 1900 году, обрела фундаментальный статус в квантовой механике, завершенной к 1927 году.

Именно тогда, в середине 1920-х годов, Матвей Бронштейн входил в науку и вырабатывал свой cGh-взгляд на мир теоретической физики. С этой точки зрения, указанные фундаментальные теории можно называть c-теорией, cG-теорией и h-теорией. А теорию гравитации Ньютона — G-теорией. Принимая за исходный пункт исторического развития Ньютонову механику как теорию упругого удара, или физику бильярда, Бронштейн представил схемы преемственного развития и смены теорий, которые образуют cGh-карту фундаментальных теорий или (вместо глобуса) cGh-куб, изображенные на рисунке, где полужирный шрифт и сплошные рамки соответствуют теориям, уже созданным к началу 30-х годов.

cGh-карта фундаментальной физики


Иллюстрации из статьи М. Бронштейна 1933 года

Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Кто изобрел современную физику? От маятника Галилея до квантовой гравитации

N-теория (HM) — Ньютонова механика,

G-теория (ГН) — Гравитация Ньютона,

c-теория (ТО) — Теория относительности,

cG-теория (ГЭ) — Гравитация Эйнштейна,

h-теория (КМ) — Квантовая механика,

ch-теория (КЭ) — Квантовая электродинамика,

cGh-теория (КГ) — Квантовая гравитация.


(Полужирный шрифт и сплошные рамки соответствует теориям, уже созданным к началу 30-х годов.)

Три схемы, изображенные слева, образуют грани cGh-куба фундаментальных теорий (справа).

Что же касается теорий, создания которых ожидали, физики о них думали по-разному.

Из уважения к заслугам Эйнштейна начнем с него, хотя к началу 30-х годов его взгляды мало кто разделял. Как ни удивительно, физик, столько сделавший для развития квантовой теории и получивший Нобелевскую премию в основном за это, тогда уже, по существу, не признавал фундаментальный характер постоянной h. Уже лет десять Эйнштейн искал так называемую единую теорию поля, в которой гравитация и электромагнетизм — проявления некоего единого поля, и надеялся, что следствием этой теории станет квантовая теория и сама величина h. В 30-е годы у него остались лишь считанные сторонники.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию