R. C. Paniello, J. M. D. Day, and F. Moynier. Zinc isotopic evidence for the origin of the Moon, Nature 490 (2012) 376–379.
A. G. W. Cameron and W. R. Ward. The origin of the Moon, Abstr. Lunar Planet. Sci. Conf. 7 (1976) 120–122.
W. Benz, W. L. Slattery, and A. G. W. Cameron. The origin of the moon and the single impact hypothesis I, Icarus 66 (1986) 515–535.
W. Benz, W. L. Slattery, and A. G. W. Cameron. The origin of the moon and the single impact hypothesis II, Icarus 71 (1987) 30–45.
W. Benz, A. G. W. Cameron, and H. J. Melosh. The origin of the moon and the single impact hypothesis III, Icarus 81 (1989) 113–131.
R. M. Canup and E. Asphaug. Origin of the Moon in a giant impact near the end of the Earth’s formation, Nature 412 (2001) 708–712.
A. Reufer, M. M. M. Meier, and W. Benz. A hit-and-run giant impact scenario, Icarus 221 (2012) 296–299.
J. Zhang, N. Dauphas, A. M. Davis, I. Leya, and A. Fedkin. The proto-Earth as a significant source of lunar material, Nature Geosci. 5 (2012) 251–255.
R. M. Canup, Simulations of a late lunar-forming impact, Icarus 168 (2004) 433–456.
A. Mastrobuono-Battisti, H. B. Perets, and S. N. Raymond. A primordial origin for the compositional similarity between the Earth and the Moon, Nature 520 (2015) 212–215.
4. Космос как часовой механизм
S. F. Dermott. On the origin of commensurabilities in the solar system II: the orbital period relation, Mon. Not. RAS 141 (1968) 363–376.
S. F. Dermott. On the origin of commensurabilities in the solar system III: the resonant structure of the solar system, Mon. Not. RAS 142 (1969) 143–149.
F. Graner and B. Dubrulle. Titius-Bode laws in the solar system. Part I: Scale invariance explains everything, Astron. & Astrophys. 282 (1994) 262–268.
B. Dubrulle and F. Graner. Titius-Bode laws in the solar system. Part II: Build your own law from disk models, Astron. & Astrophys. 282 (1994) 269–276.
A. J. Ste, N. J. Cunningham, A. B. Shinn, and S. A. Stern. A search for Vulcanoids with the STEREO heliospheric imager, Icarus 233 (2013) 48–56.
5. Небесная полиция
M. Moons and A. Morbidelli. Secular resonances inside mean-motion commensurabilities: the 4/1, 3/1, 5/2 and 7/3 cases, Icarus 114 (1995) 33–50.
M. Moons, A. Morbidelli, and F. Migliorini. Dynamical structure of the 2/1 commensurability with Jupiter and the origin of the resonant asteroids, Icarus 135 (1998) 458–468.
Анимация, показывающая связь между точками Лагранжа и гравитационным потенциалом https://en.wikipedia.org/wiki/File: Lagrangian_points_equipotential.gif
См. анимированную иллюстрацию «Астероиды-троянцы вокруг Юпитера» https://www.exploremars.org/trojan-asteroids-around-jupiter-explained.
F. A. Franklin. Hilda asteroids as possible probes of Jovian migration, Astron. J. 128 (2004) 1391–1406.
http://www.solstation.com/stars/jupiter.htm
6. Планета, поглотившая своих детей
P. Goldreich and S. Tremaine. Towards a theory for the Uranian rings, Nature 277 (1979) 97–99.
M. Kenworthy and E. Mamajek. Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons? arXiv:1501.05652 (2015).
F. Braga-Rivas and 63 others. A ring system detected around Centaur (10199) Chariklo, Nature 508 (2014) 72–75.
7. Звезды Козимо Медичи
E. J. Rivera, G. Laughlin, R. P. Butler, S. S. Vogt, N. Haghighipour, and S. Meschiari. The Lick-Carnegie exoplanet survey: a Uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration, Astrophys. J. 719 (2010) 890–899.
B. E. Schmidt, D. D. Blankenship, G. W. Patterson, and P. M. Schenk. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa, Nature 479 (2011) 502–505.
P. C. Thomas, R. Tajeddine, M. S. Tiscareno, J. A. Burns, J. Joseph, T. J. Loredo, P. Helfenstein, and C. Porco. Enceladus’s measured physical libration requires a global subsurface ocean, Icarus (2015) in press; doi:10.1016/j.icarus.2015.08.037.
S. Charnoz, J. Salmon, and A. Crida. The recent formation of Saturn’s moonlets from viscous spreading of the main rings, Nature 465 (2010) 752–754.
8. Верхом на комете
M. Massironi and 58 others. Two independent and primitive envelopes of the bilobate nucleus of comet 67P, Nature 526 (2015) 402–405.
A. Bieler and 33 others. Abundant molecular oxygen in the coma of comet 67P/Churyumov — Gerasimenko, Nature 526 (2015) 678–681.
P. Ward and D. Brownlee. Rare Earth, Springer, New York, 2000.
J. Horner and B. W. Jones. Jupiter — friend or foe? I: The asteroids, Int. J. Astrobiol. 7 (2008) 251–261.
9. Хаос в космосе
См. видео http://hubblesite.org/newscenter/archive/releases/2015/24/video/a/
J. R. Buchler, T. Serre, and Z. Kolláth. A chaotic pulsating star: the case of R Scuti, Phys. Rev. Lett. 73 (1995) 842–845.
T. Palmer. The real butter y E ect, Nonlinearity 27 (2014) R123–R141.
V. Hoffmann, S. L. Grimm, B. Moore, and J. Stadel. Chaos in terrestrial planet formation, Mon. Not. RAS (2015); arXiv: 1508.00917.
A. Milani and P. Farinella. The age of the Veritas asteroid family deduced by chaotic chronology, Nature 370 (1994) 40–42.
June Barrow-Green. Poincaré and the Three Body Problem, American Mathematical Society, Providence, 1997.
M. R. Showalter and D. P. Hamilton. Resonant interactions and chaotic rotation of Pluto’s small moons, Nature 522 (2015) 45–49.
J. Wisdom, S. J. Peale, and F. Mignard. The chaotic rotation of Hyperion, Icarus 58 (1984) 137–152.
M. A. Richards and nine others. Triggering of the largest Deccan eruptions by the Chicxulub impact, GSA Bull. (2015), doi: 10.1130/B31167.1.
W. F. Bottke, D. Vokrouhlický, and D. Nesvorný. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor, Nature 449 (2007) 48–53.
10. Межпланетная автострада
M. Minovitch. A method for determining interplanetary free-fall reconnaissance trajectories, JPL Tech. Memo. TM-312–130 (1961) 38–44.
M. Lo and S. Ross. SURFing the solar system: invariant manifolds and the dynamics of the solar system, JPL IOM 312/97, 1997.