Ритм вселенной. Как из хаоса возникает порядок - читать онлайн книгу. Автор: Стивен Строгац cтр.№ 81

читать книги онлайн бесплатно
 
 

Онлайн книга - Ритм вселенной. Как из хаоса возникает порядок | Автор книги - Стивен Строгац

Cтраница 81
читать онлайн книги бесплатно

В 1981 г. нелинейная динамика не достигла того уровня, на котором она могла бы предсказывать поведение таких вращающихся волн в трех измерениях. Не было никакой надежды на то, чтобы просчитать их эволюцию во времени, их удары, их вихревые картины электрической турбулентности. Даже если бы соответствующие вычисления были возможны (например, с помощью какого-нибудь суперкомпьютера), любая такая попытка оказалась бы преждевременной, поскольку никто не знал бы, как интерпретировать полученные результаты. Вообще говоря, никто даже не знал, как могла бы выглядеть фотография одного из этих призрачных злодеев. (Во всяком случае, никому из кардиологов не удавалось наблюдать их воочию.) Поэтому Уинфри считал, что первым делом нужно научиться распознавать их, предсказывать, хотя бы умозрительно, их особенности; в дальнейшем можно будет заняться разгадкой их «модус операнди» (или, образно выражаясь, способа совершения преступления).

Для изучения форм в трех измерениях требовался более примитивный математический аппарат, учитывающий лишь пространство, но не принимающий во внимание время. Упомянув в своем письме о «топологических загадках», Уинфри имел в виду отрасль математики, называемую топологией и занимающуюся изучением непрерывной формы, своего рода обобщенную геометрию, в которой жесткость заменена эластичностью, как если бы все было изготовлено из резины. Формы могут непрерывно деформироваться, сгибаться или скручиваться – но ни в коем случае не разрезаться. Квадрат топологически эквивалентен окружности, поскольку вы можете скруглить его углы. С другой стороны, окружность отличается от формы цифры «8», поскольку вы не можете избавиться от точки пересечения, не прибегнув к помощи ножниц. В этом смысле топология идеально подходит для сортировки форм на обширные классы, основываясь исключительно на их топологических свойствах. План Уинфри заключался в использовании топологии для классификации видов волн, которые могут встретиться в трехмерных полях возбудимых клеток. Зная все возможные варианты, он понимал бы, что именно нужно искать в последующих экспериментах; таким образом, у него появилась бы надежда распознать то, что в противном случае казалось бы просто причудливыми непонятными структурами.


Когда в один из душных июньских дней 1982 г. я прибыл в лабораторию Уинфри, я застал его погрузившимся в ворох бумаг; он сидел на скамье, его рубашка была широко распахнута (очевидно, таким способом он пытался спастись от удушающей жары). Я был несколько смущен столь «неформальным» видом этого великого ученого – я добирался из Коннектикута в Индиану на автомобиле вместе со своим отцом, который никогда ранее не видел моего нового кумира, – но Уинфри обезоружил нас своим искренним дружелюбием. Вскоре отец уехал, и мы с Уинфри остались наедине в лаборатории, которая была уставлена разнокалиберными мензурками, бунзеновскими горелками и прочими приспособлениями, назначение которых я пока не понимал. (Между прочим, на столах я заметил множество лезвий для безопасной бритвы. Как оказалось впоследствии, эти лезвия были любимым инструментом Уинфри, когда ему нужно было что-нибудь разрезать или отрезать. Он с довольным видом вскрикивал «Вжжжик!» каждый раз, когда использовал одно из таких лезвий, чтобы отрезать кусок провода или микропористой фильтровальной бумаги.)

В лаборатории было тихо. Я не заметил там ни одного аспиранта или младшего научного сотрудника. Впрочем, я был готов к этому: в одном из первых писем ко мне, после того как я спросил у Уинфри, кто еще будет работать с нами, он ответил: «Сейчас я мог бы сочинить историю о других аспирантах + сотрудниках. Но, по правде говоря, у меня нет ни тех, ни других. Возможно, дело в том, что я плохо схожусь с людьми, возможно, от меня неприятно пахнет, не знаю… но плотность населения в моей лаборатории = 1. Вы станете единичным событием в жизни моей лаборатории. Не подрывает ли этот факт Ваше доверие ко мне?»

На совместную работу нам было отведено лишь три месяца. Поэтому мне нужно было как можно быстрее входить в курс дела. Уинфри полагал, что мне следует «немного замарать руки», то есть на какое-то время отставить в сторону математику и компьютеры. Моим первым проектом был эксперимент с материалом, кототорый сам Уинфри называл «супом Жаботинского» [209]: химическая реакция, которая поддерживает волны возбуждения, чрезвычайно похожие на электрические волны, которые запускают сердцебиение. Однако в этом эксперименте все должно было оказаться значительно проще, чем с реальным сердцебиением, во всяком случае я не собирался экспериментировать с настоящим сердцем, с его мышцами и сокращениями. Речь шла о неком идеализированном объекте для исследования распространения волн возбуждения в его самой «чистой» форме. В этом смысле эксперименты с пресловутым супом Жаботинского играют такую же роль в исследовании волн сердца, какую играют мушки-дрозофилы в генетике: удобный для изучения упрощенный вариант, в котором заключена сущность более сложных явлений.

Обычно самым занимательным результатом, которого можно ожидать при выполнении какого-либо химического эксперимента, является возникновение облачка дыма или отвратительного запаха. В отличие от этих, вообще говоря, тривиальных случаев, эксперимент с супом Жаботинского позволяет исследователю удовлетворять свое интеллектуальное любопытство в течение очень долгого времени. Если этот суп приготовить в соответствии с оригинальным рецептом, то он ведет себя подобно самопроизвольному осциллятору и является химическим аналогом клеток задатчика сердечного ритма. Он ритмично изменяет свой цвет десятки раз, туда и обратно, становясь попеременно то небесно-голубым, то ржаво-красным, приходя в конце концов (примерно через час после начала химической реакции) в состояние равновесия. На молекулярном уровне такие проявления могли бы выглядеть еще более впечатляюще, если бы, конечно, мы могли наблюдать их: триллионы связанных осцилляторов, пританцовывающих в идеальном синхронизме – самый массовый танец в стиле кантри из тех, которые когда-либо удавалось организовать.

При использовании нового, более утонченного рецепта эта химическая реакция является возбудимой. Поначалу она выглядит обескураживающе инертной. Осцилляции практически отсутствуют. Но если налить тонкий слой этого красного супа в чашку Петри, а затем проколоть этот слой серебряной проволочкой или горячей иголкой, он внезапно запускает голубую круговую волну, которая распространяется, подобно огню на сухой траве. Это химическая волна: импульс запускает реакцию, при которой вещество в чашке Петри окисляется. После того как эта волна пройдет, вещество переходит в состояние покоя и снова приобретает красный цвет, точно так же как трава, выгоревшая в результате пожара, со временем снова начинает расти. (Конечно же, предложенная мною аналогия с травой не идеальна. Химические вещества восстанавливаются гораздо быстрее, чем выгоревшая трава; следом за первой волной может двигаться вторая волна.)

Химические волны совершенно не похожи на волны, изучаемые в традиционных курсах физики (например, звуковые волны или рябь на поверхности пруда). Когда химическая волна распространяется путем диффузии, поверхность жидкости не поднимается и не опускается. Она остается неподвижной. Подвижной оказывается картина возбуждения, своего рода «химическое заражение». Еще одно отличие от обычных волн заключается в том, что химические волны не ослабевают, подобно звуковым волнам или ряби на поверхности пруда, по мере распространения в стороны от места их зарождения. Каждый клочок этой среды служит новым источником энергии, которая подпитывает волну, не давая ей угаснуть.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию